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1 Examples of statistical thinking

1.1 Mortality rate

There is a famous study by Case & Deaton (2015) showing rising mortality of midlife white non-
Hispanic men and women in the United States after 2000. Figure 1 visualizes the main result for
several advanced economies where the US stands out as an exception.

Figure 1: Figure from Case & Deaton (2015) showing rising mortality of the middle-age non-Hispanic white
population in the US as opposed to the mortality trend in other countries. USW means US non-Hispanic
white.

This study received significant media attention due to its inherent political implications. If no
other factor is considered, the trend seems to be attributed only to the race-ethnicity. However,
this important and controversial result was put under scrutiny by Gelman & Auerbach (2016)
who used the same data but found that the mortality rates for the middle-aged non-Hispanic
whites did not steadily increase. What they showed is that the seemingly increasing mortality
rate among the middle-aged non-Hispanic whites is because the average age for this group went
up, as shown in the top centered panel (B) in Figure 2. When the average age is adjusted, the
mortality of midlife non-Hispanic whites doesn’t show a steady increase. More importantly, the
mortality rate of the non-Hispanic white males has been decreasing since 2005, while that of the
non-Hispanic white females white has been dramatically increasing as shown in the bottom panel
in Figure 2.

What can we learn from this example? It shows that data analysis is a subtle work whose results
might change depending on which aspects of the data researchers want to reveal. Case and Deaton
did not make a mistake and they correctly brought up a markedly different mortality pattern for
non-Hispanic white people in the US compared to other countries. However, they used the raw
data without proper age-adjustment and thus failed to separate the increasing average age from
the mortality trend. In contrast, Gelman & Auerbach (2016) used the age-adjusted data and could
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Figure 2: Figures from Gelman & Auerbach (2016) showing that the increasing mortality rate among the
non-Hispanic white population is due to the rising average age in this group. When the average age is
adjusted, the mortality rate for non-Hispanic white males decreases since 2015.

not only show the overall trend more correctly, but also find out the gender difference in mortality
rate.

1.2 Words are new numbers

Economics is about numbers. However, there is a growing interest in doing empirical economics
with words instead of numbers. For example, Thorsrud (2020) from Norges Bank constructed a
public sentiment index based on the words printed in newspapers that performs well in explaining
business cycles. Figure 3 showed how well the textual information contained in a daily business
newspaper, matches the GDP growth in Norway.

This creative work is entirely due to a recent development in natural language processing, the
methodology that has been widely used in machine learning. Without rapid progress in computa-
tional technology, this type of research would not have been possible. This is a good example of
how progress in statistical techniques can give a better insight into some of the problems of central
importance in our life.

1.3 Wine price and web scraping

We don’t have to talk about serious stuff all the time. Sometimes, we want to drink wine with
friends. Even here, statistics has something interesting to tell us. Kotonya et al. (2018) used the
scraped data from the Vivino website, which provides prices, reviews & ratings of millions of world
wines. For example, Figure 4 shows the price distribution by different categories. We can see that,
as conventional wisdom goes, French wine and their Pinot Noir are the most expensive ones.

The key feature of this study is that the researchers did not obtain the data from a national
statistical office or private consulting firm, but directly from an online website using a technique
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coincident index model in terms of data usage. In particular,
only monthly and daily hard economic indicators are used as
observables together with !GDP1,a,kqt . Among the observable
variables used are commonly applied business cycle indicators
like the difference between long- and short-run interest rates
(Spread), the return on the Oslo Stock Exchange (OSEBX), and
labor market conditions (LF). A more detailed description of
the data used in the CI model is given in online Appendix D.
In total Nq = 1, Nm = 16, and Nd = 4 for this model. For all
four model speci!cations I allow for one lag in the equation
for the idiosyncratic errors (p = 1), and up to ten lags for the
latent common business cycle index (h = 10). The (full) esti-
mation sample is January 1, 1989 to June 28, 2016, yielding
10,041, 329, 109, daily, monthly, and quarterly observations,
respectively.

4. A NEWSY COINCIDENT INDEX OF THE
BUSINESS CYCLE

The full-sample-based estimate of the NCI is illustrated in
Figure 4. As clearly seen in the !gure, the index tracks the gen-
eral economic "uctuations closely. For example, compared to
the simple PCA estimates reported in Figure 3, the NCI pro-
vides a better !t: It captures the recession period in the early
1990s, the boom and subsequent bust around the turn of the
century, and !nally the high growth period leading up to the
Great Recession. Note, however, that in Norway, the downturn
in the economy following the Norwegian banking crisis in the
late 1980s was just as severe as the downturn following the
global !nancial crisis in 2008. Figure 8 in online Appendix A
reports the NCI together with the alternative indexes NCInotv psw

and CI. Again, simple visual inspection suggests that the
NCI tracks the overall state of the economy better than the
alternatives.
The time-varying changes in the variance of the NCI errors

are illustrated in Figure 9 in online Appendix A. Unexpectedly,
the model picks up a substantially higher variance in the !rst

part of the sample relative to in the latter part, although the
!nancial crisis period is associated with increased uncertainty.
Convergence statistics indicating that the MCMC algorithm
has reached the ergodic distribution are discussed in online
Appendix C.
In the following I !rst formally evaluate the model’s

in-sample classi!cation properties. Then I illustrate how
movements in the NCI can be decomposed into news topic
contributions and how the sparsity structure of the model
changes signi!cantly across time. Finally, the model is tested
in an out-of-sample nowcasting experiment.

4.1 In-Sample Evaluation

Like in Travis and Jordà (2011), and in the tradition of Burns and
Mitchell (1946), I categorize aggregate economic activity into
phases of expansions and contractions and evaluate the index’s
ability to classify such phases using Receiver Operating Charac-
teristic (ROC) curves and area under the curve (AUROC) statis-
tics.
In contrast to in, for example, the U.S., which has an of!cial

business cycle dating committee (NBER), no formal dating
exists for Norway. For this reason, I use four different business
cycle chronologies developed by Aastveit, Jore, and Ravazzolo
(2016) for the Norwegian economy as measures of the “truth.”
Each chronology is constructed using different methodolo-
gies to extract the unobserved phases: uni- and multivariate
Bry-Boschan approaches (BB-GDP and BB-ISD), a univariate
Markow-switching model (MS-GDP), and aMarkov-Switching
factor model (MS-FMQ). Since all these methods provide a
quarterly classi!cation of the business cycle phases, daily clas-
si!cations are obtained by assuming that the economy remains
in the same phase on each day within the quarterly classi!ca-
tion periods. Details about the chronologies are summarized in
Table 11 in online Appendix D.
I also compare theNCI’s performance against the four model-

based alternatives described at the end of Section 3.2 (NCInotv p,

Figure 4. !GDPa is the standardized !rst release of output growth. It is recorded at the end of each quarter, but reported on a daily basis
using end-of-period values throughout the quarter. NCI is the standardized measure of the daily coincident index. The dotted black lines are 68%
probability bands. The solid black line is the median estimate. Recession periods, de!ned by an MS-FMQ model, see Section 4.1, are illustrated
using gray shading.

Figure 3: A figure from Thorsrud (2020) showing how textual information contained in a daily business
newspaper matches well with the business cycle index based on quarterly GDP growth. NCI represents a
Newsy coincident Index constructed from the words printed in newspapers.

known as web scraping or web crawling. This is also a good example of how statistical work (even
descriptive one) can greatly benefit from a fast computer and efficient algorithms.

2 Statistical decision tree

The examples we discussed above utilize specific statistical tools for the purpose of a particular
statistical analysis. Then, how can we choose the right statistical technique when dealing with
a real-life statistical problem with data? Not surprisingly, there is a cheat sheet, known as a
statistical decision tree. There are many different variations of this cheat sheet, but they follow a
similar structure as shown in Figure 5.

This decision tree can be helpful for finding an appropriate statistical tool among many when
faced with a particular statistical problem. However, is memorizing a cheat sheet the ultimate goal
of statistical learning? Obviously not. As we will discuss in this course, statistical thinking goes
far beyond applying an existing toolbox mechanically. Therefore, we will forget about this decision
tree for now and start from understanding a set of underlying principles of statistical thinking. By
doing so, we won’t have to confine ourselves to the existing toolbox when we encounter new statis-
tical problems. Plus, we will be able to understand when the decision tree helps and when it doesn’t.

To do this, we need to understand probability, the foundation of statistical inference.

3 What is probability?

3.1 A brief history

Suppose there is a bet and you can buy a ticket that guarantees you $1 when a certain outcome
occurs, e.g. the head of the coin. How much are you willing to pay for the ticket? The theory of
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(a) Country (b) Typey

(c) Single Varietal Wines

yp

(d) Blended Wines
Figure 3: Average price distributions in pound sterling, shown for
wines with average prices in the interval [5,106). Plots are truncated
at 200.

American users, for local wines. One reason for the general
trend in falling ratings could be that users have a more positive
perception of older wines. Another reason is that as the number
of users on the social network has grown, the distribution of
wine ratings may have changed to reflect a more diverse (and
perhaps discerning) user base.

B. Wine Ratings and Prices

We first examined the trend in prices across (a) country,
(b) type, (c) varietals, and (d) blends as shown in Figure
3. Price listings on Vivino are based on averages generated
from a limited set of vendors and the price data for wines
has a low frequency (see Section III). Therefore, we cannot
guarantee the reproducibility of these results, however, our
analysis can provide an indication of the correlation between
price and ratings. We find that prices vary substantially across
wine variables, in particular vintage, as expected older wines
are more expensive than newer ones. Similarly, wines from
specific countries: France in particular, but also the United
States are more expensive than others.

Next, we set out to test whether the average price of the
wine correlates to high average ratings. We find no evidence
to support a relationship that more expensive wines receive
higher scores than less expensive wines. However, there does
seem to be some relationship between price and ratings. Figure
2(b) shows how the average price relates to ratings for wines
in four ratings brackets. The highest average price is observed
for wines rated between 2.0 and 3.0 stars, followed by wines
in the 3.0 to 4.0 stars bracket. Interestingly, wines rated below
2.0 stars have a higher average price than those rated between
4.0 and 5.0 stars, whose average price is the lowest. This
could be because more expensive wines do not meet the high
expectations placed on them.

(a) #Followers (b) #Users Following (c) #Ratings
Figure 4: Distributions for the top 10k Vivino users from countries
with the highest levels of wine consumption.

C. Use of language on Vivino

For our analysis of language employed by Vivino users, we
examine the biographies and reviews of users. User biogra-
phies are tag-lines and short snippets of text, which appear
on a profile page, they often state a user’s motivation for
joining the social network and occasionally provide a link to
the individual’s personal or professional websites. User wine
reviews, which are typically accompanied by a quantitative
score, vary from single word comments, expressing either
approval or disapproval, to lengthier descriptive texts, which
outline a user’s experiences of a wine. These usually detail
the taste and appearance of the beverage, and suggest dishes
which complement the wine and from time to time describe
occasions where the wine could be served.

1) User biographies: Only 16k (11.6%) of the 137.5k high-
ranking users have biographies. This finding, coupled with the
power-law distributions plotted in Figure 4, which show α =
1.05, α = 1.06, and α = 1.17 for followers, users following, and
ratings respectively, indicates that wine ratings, and not social
connections, are the main motivation behind users’ interactions
on the platform. 683 biographies contain the word sommelier;
434 biographies contain the abbreviations WSET, N2, N3, N4
or N5 (names of professional wine tasting qualifications); 120
contain the word expert; and 135 contain the word profes-
sional. Conversely, 300 users describe themselves as amateur,
159 as learning, and 9 think of themselves as a learner.
Interestingly, significantly more Vivino biographies contain
keywords implying that users are wine experts, than those
which contain keywords implying they are novices. However,
the sample size is very small, and therefore few findings
can be confidently drawn from these data. Furthermore, 274
biographies contain a web address, of these, 114 are email
addresses. Thus, it would be fair to assume that these users
are looking to forge professional connections, rather than social
ones.

We also examine how user biographies vary across region,
ranking and number of ratings contributed. Biography unigram
and bigram frequency distributions do not vary significantly
by user ranking. However, they do when users are grouped
by the number of ratings contributed. For users with fewer
ratings, their bios typically have a high frequency of the words
learning, student, amateur and enthusiast. On the other hand,
for users who have contributed more than 1,000 wine ratings
on Vivino, the frequency for enthusiast is significantly lower.
These users are much more likely to describe themselves as
certified, having a WSET qualification and provide their email
address in their biography.

2) Wine reviews: We analyze reviews published between
the dates 8 September 2012 and 27 March 2017. These
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Figure 4: A figure from Kotonya et al. (2018) showing price distributions of wine in pounds depending on
types.

probability actually originated in this practical question of how much a player should/is willing
to pay for bets in gambling back in the 17th century. The probability concept was understood
as a tool for quantifying a subjective chance of a betting outcome. It was subjective since the
probability was associated with the opinion or willingness of a better. Since the theory of
probability developed as a theory of chances or a theory of betting, statisticians/philosophers such
as Thomas Bayes and Pierre-Simon Laplace back then contemplated on seemingly unanswerable
questions using the theory of probability such as the chance of sun rising the next day.1

Starting in the 19th century, the concept of probability took a radical turn when a group of
statisticians (Karl Pearson, and R. A. Fisher) began to use probability as observed frequencies. It
was radical because they understood probability as being objective in the sense that it refers to
the frequency of an event occurring over an infinite number of observations generated from a true
process. That is, these statisticians assumed that there is a true data-generating process, which
is unknown to us, but reveals itself in constant frequencies of various outcomes in infinitely long
series of observations.

1This is a very interesting statistical problem. We will come back to this question when we discuss Laplace’s rule
of succession.
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Figure 5: A statistical decision tree from McElreath (2020).

The history of statistics in the 20th century was punctuated by dialogues/clashes between
these two different schools of thoughts, namely, Bayesians vs. Frequentists. This course does not
subscribe to one of these two different theories. Instead, the main objective of the course is to give
students the foundation for understanding and actively engaging with statistical problems from a
wide range of methodological perspectives and, therefore, we will introduce and compares various
statistical approaches, including both Bayesian and Classical.

3.2 Concept

With this philosophical debate in mind, let’s formally define the probability that is applicable (at
least loosely) to the different methodologies that we will be covering throughout this course.

Suppose we have a repeatable and countable experiment such as a coin toss, a clinical trial of
a drug, or drawing a ball from an urn of balls with red, blue, and green colors. Each experiment
has a set of possible outcomes. For example, a head or a tail in a coin tossing, ameliorating vs.
deteriorating effects in a drug test, and a red, blue or green ball in the urn example. Now, we
define sample space (or event space) Ω as the set of all possible outcomes of an experiment. We
also define event as a subset of a sample space, e1, e2, . . . , ek.
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A naive/primitive definition of probability of the event ei, p(ei) is the number of favorable
outcomes in ei over the number of all possible outcomes in Ω.

P (ei) =
# of favorable outcomes in ei
# of all possible outcomes in Ω

(1)

Note that this is a naive/primitive definition because we need to assume that all outcomes are
equally likely and that the sample space is finite. A probability space or a system of probabilities
over the sample space Ω is a list of non-negative P (ei) that, by definition, add up to 1.

k∑

i=1

Pi = 1, i = 1, . . . , k (2)

It is helpful to think of probability as a function that takes an event ei (a subset of Ω) as
input and gives some number between 0 and 1 as output. Note that since calculating probabil-
ity involves calculating the number of favorable outcomes, combinatorics becomes really important.

Examples
Let’s take some simple examples. Suppose we conduct the experiment of tossing a coin twice.

The outcome of each experiment is having a tail (T) or an head (H). What is the probability
of seeing a head at least once? In this experiment, there are a total of 4 possible outcomes,
HH,HT, TH and TT , where H means a head and T means a tail. The number of favorable
outcomes in the event of our interest (# of heads ≥ 1) are 3 because all HH,HT , and TH have H
at least once. Therefore, the probability of seeing a head at least once in our coin toss experiment
is 3/4.

Second, let’s throw two dice. What is the probability that the total is 10? The possible
favorable outcomes are {6,4}, {4,6}, and {5,5}. Since the number of all possible outcomes is 36
(36 = 62, 6 faces of the die thrown 2 times), the probability that the total is 10 is 3/36.

3.3 Basic properties and notation

There are some important properties of probability that are conceptually important and will
help us to calculate some complicated probabilities later on as well. I will use Venn diagrams to
illustrate some of the properties (See Figure 6).

1. Suppose event A and B. By definition, we have

P (A) =
∑

si∈A
P (si)

P (B) =
∑

si∈B
P (si)

where si is a favorable outcome in a relevant event.

2. The probability of an empty set (zero outcomes) is zero P (∅) = 0 while the probability of
the entire set (all possible outcomes) P (Ω) = 1.

7



Ω
AAc

Ω

A∩B

A B
Ω

(A∪B)c

A B
Ω

Figure 6: The entire sample space Ω and its two subsets A and B.

3. The complement of an event A is Ac: P (Ac) = 1− P (A)

4. The probability that both A and B occur, i.e., the joint probability of A and B (intersection
of events A and B): P (A ∩B).

5. The probability that at least one of the event occurs (union of events A and B):
P (A ∪B) = P (A) + P (B)− P (A ∩B)

6. The probability that none of A and B occurs: P (A ∪B)c = 1− P (A ∪B)

3.4 Conditional probability and independence

Conditional probability
As we can see in the case of the union and intersection of events, the probability can be defined
for multiple events as well. In this case, it is important to understand how each event is related to
one another. One key question to ask is whether the occurrence of the event affects the occurrence
of other events. For example, drawing a red ball without replacement from an urn with red
and white balls affects the chance of drawing another red ball subsequently since the first draw
changes the number and the composition of balls in the urn. In contrast, when drawing a red from
the same urn with replacement, meaning that we put the ball back when we draw it, the chances
of drawing another red ball do not change. This example shows that we need to understand how
each event is related to others when dealing with multiple events.

One key concept that captures the relationships between the occurrences of events is the con-
ditional probability. For events A and B, the conditional probability is defined as the probability
that A occurs given that B occurs

P (A|B) =
P (A ∩B)

P (B)
, (3)

8



Going back to the Venn diagram above, the conditional probability is the fraction of the event
B where both A and B occur. Using a more technical word, the probability space is normalized
with respect to event B, which explains why we have the probability of B in the denominator. See
Figure 7 for visualization.

A∩B

A B
Ω

Figure 7: Normalization with respect to set A.

Independence
Like drawing a ball from an urn without replacement, there are many cases when the

occurrence of one event affects the occurrence of other events. For example, the probability of
getting admitted to a university depends on which department/school one applies to. In this case,
we say that events are dependent. When we have dependent events, the conditional probability
P (A|B) differs from the unconditional or marginal probability P (A) since the occurrence of event
B affects the occurrence of event A.

What happens if event B doesn’t have any information about event A? That is, if the
occurrence of event B does not affect the probability of occurrence of event A, we say events
A and B are independent. In this case, the conditional probability P (A|B) is the same as the
unconditional or marginal probability P (A).

9



3.5 Joint probability

From the Equation 3, the joint probability of A and B can be calculated with a simple multiplication
rule as follows

P (A ∩B) = P (A|B)P (B) or (4)

P (A ∩B) = P (B ∩A) (5)

= P (B|A)P (A) (6)

Note that when events A and B are independent, the joint probability simply becomes a product
of two marginal probabilities2, .

3.6 Examples

Urn example
Now let’s look at a simple urn example. Suppose we have one urn with 5 black balls and 3

white balls. We draw 3 balls without replacement, meaning that when we draw a ball we do not
put it back. Then, what is the probability of drawing 2 black balls and 1 white ball? The most
tedious way of calculating this probability is to find each probability of {B,B,W}, {B,W,B} and
{W,B,B}, which are the cases of two balls out of three, and add them together. We can easily
see from the definition of the joint distribution in Equation 6 that the probability of {B,B,W} is
P (X1 = B,X2 = B,X3 = W ) = P (X1 = B)P (X2 = B|X1 = B)P (X3 = W |X1 = B,X2 = B)
= (5 black balls / 8 remaining balls)*(4 black balls / 7 remaining balls)*(3 white balls /
6 remaining balls), where X. represents the color of the balls. Note that the probability
of drawing the second black ball is conditional on the draw of the first black ball since
we are drawing a ball without replacement. Since the probability of two black balls
is the sum of these three cases {B,B,W}, {B,W,B} and {W,B,B}, the answer is
(5/8) ∗ (4/7) ∗ (3/6) + (5/8) ∗ (3/7) ∗ (4/6) + (3/8) ∗ (5/7) ∗ (4/6) = 0.536.

There is another way of calculating this probability using a simple combination rule, a
counting technique when the order does not matter. Refer to Appendix A.1 for an overview of
combinations (or Binomial coefficient).3 Using combinations, the possible favorable outcomes
for two black balls and one white ball can be calculated simply by

(
5
2

)
×
(
3
1

)
, meaning that

we choose 2 black balls out of 5 and choose 1 ball from 3 white balls. The number of all
possible outcomes of drawing 3 balls is

(
8
3

)
, meaning that we choose any 3 balls from all

8 balls. Therefore, the probability of drawing 2 black balls and 1 white ball is
(
5
2

)
×
(
3
1

)
/
(
8
3

)
= 0.536.

Birthday problem
Let’s looks at another problem, namely a birthday problem. Suppose we have a group of 10

people. Then, what is the probability that at least two people among this group have the same
birthday? Here, we will use the complement rule and calculate the probability of no match first
and then subtract it from 1, 1 − P (no match). The number of favorable outcomes in no match is
simply 365 × 364 × · · · × 356. That is, the first person’s birthday is anything from 365 days, and
the second person’s birthday is anything but the first person’s birthday, which is any day from 364

2Note that the notation P (A ∩B) and P (A,B) are equivalent.
3Combinations, nCk, and the binomial coefficient,

(
n
k

)
, are mathematically the same: nCk =

(
n
k

)
= n!

k!(n−k)!
. We

will use the notation for the binomial coefficient throughout this course.
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days, and the third person’s birthday is anything but the first and the second person’s birthdays,
which is any day from 363 days, and so forth. Since the number of all possible outcomes for 10
persons’ birthday is 36510, we can calculate the probability that at least two people among this
group have the same birthday as

P (match) = 1− 365× 1× · · · × 356

36510
= 0.117 (7)

That is, there is an 11.7% chance that at least two people among a group of 10 people have the
same birthday.

Newton–Pepys problem
Finally, let’s throw multiple fair dice and calculate the probability of observing “6”.

1) Suppose we throw 6 dice. What is the probability that at least one “6” appears?

P (A) = 1−
(
5

6

)6

≈ 0.66

2) 12 dice: at least two “6” appears.

P (B) = 1−
1∑

x=0

(
12

x

)(
1

6

)x(5

6

)12−x

≈ 0.62

3) 18 dice: at least three “6” appears.

P (C) = 1−
2∑

x=0

(
18

x

)(
1

6

)x(5

6

)18−x

≈ 0.60

As we can see, these seemingly same exercises have different probabilities. Interestingly enough,
the first case has the highest probability. This is exercise is called Newton–Pepys problem. You
can refer to Stigler (2006) for more technical details about this problem.

3.7 Bayes’ Theorem

From the simple multiplication rule in Equation 6, we can derive a very important theorem in
probability theory, called Bayes’ Theorem. Since P (A ∩ B) = P (A|B)P (B) = P (B|A)P (A), we
have

P (A|B) =
P (B|A)P (A)

P (B)
. (8)

Note that P (B) =
∑

k∈A P (B|A = k)P (A = k) (the law of the total probability). This
simple relation has a far-reaching implication in statistical inference, which will be discussed
in detail in Topic 3. For now, let’s try to understand what this theorem means using some examples.

Monty Hall problem
There was a television game show called “Let’s Make a Deal.” The rule of the game goes like

this. There are three boxes where one box contains a great prize and two boxes are empty. The
contestant chooses one box first, and then, the host (Monty) opens one of the two other empty
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boxes. After this, the host asks the contestant if he/she wants to switch from the chosen box to the
remaining one. Should the contestant switch or stick to the original box? This seemingly simple
exercise embodies the gist of Bayes’ theorem that a probability decision should be conditioned on
whatever information available. Let’s do some calculations and see what the answer is.

To solve this problem, we need to define two random variables: Xi for i = 1, 2, 3 is the event
that the prize is in the box i. Ki for i = 1, 2, 3 is the event that the host opens the box i. Without
loss of generality, we will suppose that the contestant chose Box 1 and the host opened Box 2.
Then, the question boils down to calculating the probability of the prize being in Box 3 conditional
on that the host opened Box 2, P (X3|K2). Using Bayes’ Theorem, we can show

P (X3|K2) =
P (K2|X3)P (X3)

P (K2|X1)P (X1) + P (K2|X2)P (X2) + P (K2|X3)P (X3)
(9)

Let’s unpack the right-hand-side one by one. First, before this game starts, each box has an equal
probability of containing the prize. If the condition is violated, the game is not fair. Therefore, we
have:

P (X1) = P (X2) = P (X3) = 1/3

P (K2|X3) is the probability of the host opening Box 2 when the prize is in Box 3 (and the contestant
chose Box 1). Since the rules of the game mandates the host to open the empty box, Box 2 will be
opened when the host knows that Box 3 has the prize. Therefore

P (K2|X3) = 1

P (K2|X1) is the probability of the host opening Box 2 when the prize is in Box 1. The host can
choose either Box 2 and Box 3 when the contestant chose Box 1 with the prize in it. Because there
is no reason to believe a priori that the host is biased to either of these two boxes, the probability
of the host opening Box 2 is 1/2.

P (K2|X2) = 1/2

Finally, P (K2|X2) is the probability of the host opening Box 2 when the prize is in Box 2. Again,
the host is mandated to open the empty box. So this probability is zero.

P (K2|X2) = 0

With this, we can calculate P (X3|K2) as follows:

P (X3|K2) =
1× 1

3
1
2 × 1

3 + 0× 1
3 + 1× 1

3

=
2

3

Since the probability of the prize being inside Box 3 is 2/3 and is greater than 1/2, the
contestant should switch to Box 3. To get a bit of intuition behind this puzzle, suppose
we have 1 million boxes instead of 3 boxes. As before, the contestant opens the first box
and the host opens all the empty boxes until there is only one box left. Do you want to
switch to the last remaining box? Probably yes because the chance you initially picked the
box with the prize is only 1/1,000,000, while the chance the remaining box is the right one
should be higher than 1/1,000,000 after the host removing all of the empty boxes for the contestant.
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Medical diagnosis
Suppose there is a patient who has been tested positive for a very rare disease that only

appears in 0.01% of the population. However, the test is not perfect and is known to have a 2%
false-positive rate and a 1% false-negative rate. With this information, what is the probability
that the patient has the disease?

As above, we need to define two random variables: D is the event that the person has the rare
disease and T is the event that the test for the disease is positive. What we are interested in is the
probability of the person having the disease conditional on the test coming out positive, P (D|T ).
Using Bayes’ Theorem, we have

P (D|T ) =
P (T |D)P (D)

P (T |D)P (D) + P (T |D̄)P (D̄)
(10)

where P (D̄) is 1 − P (D), the event that the person does not have the disease. P (D) is the prior
(or marginal) probability of the disease, which is 0.01, so

P (D) = 0.0001 P (D̄) = 0.9999 (11)

P (T |D) is the probability of a positive test conditional on the person having the disease. Since the
false-negative rate is 1%, meaning that the test identifies the patient with the true disease 99%, we
have

P (T |D) = 0.99 (12)

Finally, P (T |D̄) is the probability of a positive test conditional on the person not having the disease.
Since the false positive rate is 2%, we have

P (T |D̄) = 0.02 (13)

Therefore, we can calculate P (D|T ) as follows

P (D|T ) =
0.99× 0.0001

0.99× 0.0001 + 0.02× 0.9999
= 0.00492 (14)

Therefore, the probability of the person with the positive test actually having the rare disease
is 0.492%. The reason for such a low probability is that the prior probability of the disease is
extremely low.

4 Probability distributions

4.1 Random variable

So far, we have focused on the probability of a single event. Now, we can think of assigning a
probability to each of all possible events in Ω. To do this, we first need a function that relates
sample space Ω to the real line, which we call the random variable. This random variable is
necessary because while the sample space can consist of anything (even non-numbers such as
hit or miss), the probability space always needs to be within the real line between 0 and 1. For
example, if the sample data consists of observations on a sequence of coin tossing, a random
variable X takes two values: 1 (a “head”) or 0 (a “tail”). In this sense, a random variable is the
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realization of the random phenomena from the sample space Ω as real numbers.

Let’s take another example. Suppose that we are interested in how often we hear the word
“probability” in a history class. The sample space in this case already consists of integers from 0
to infinity and therefore the random variable takes values from 0 to infinity.

Discrete and continuous random variable
Here we divide the random variables into two groups: discrete and continuous

random variable. Loosely speaking, discrete values are enumerable values that can
be determined accurately while continuous values are non-enumerable that cannot be
determined accurately due to the fact that there are infinitely many values given the
interval. Examples of discrete variables include heads or tails in a coin tossing and the
number of babies born each year since all can be translated to integer numbers. Examples
of continuous variables include waiting time and heights, which can be translated into real numbers.

4.2 Probability functions

Probability density/mass function
Now that we established the concept of the random variable, let’s define a function that assigns

probabilities to each possible value of a random variable X. Here, we introduce the probability mass
function (PMF) and the probability density function (PDF). The PMF is a function that assigns
probabilities to each possible value of a discrete random variable X, which we will denote by pX .
By definition,

pX(x) ≡ P (X = x) (15)

where
∑

x∈Ω = 1. The PDF is the probability function but is defined for a continuous random
variable X. Note that it is “density,” which is only defined given unit volume or area:

P (a ≤ X ≤ b) =

∫ b

a
fX(x)dx (16)

where
∫∞
−∞ fX(x)dx = 1. This implies that the PDF assigns a probability fX(x)dx to the interval

[x, x+ dx]. We will discuss some examples of PDFs and PMFs in Section 6.

Cumulative probability distribution
The cumulative probability distribution (CDF) is a function that gives the probability that the

random variable X takes a value less than or equal to x:

FX(x) = P (X ≤ x) (17)

A valid CDF is a monotonically non-decreasing function within an interval of 0 and 1. It is
worthwhile to mention that all PMFs and PDFs can be derived from CDFs. This is because
probability functions can be understood as changes in the CDF.

4.3 Joint, conditional, marginal distribution

Based on the basic building blocks of probability functions reviewed in Section 3, we can define
three important types of probability distributions.
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First, the joint probability distribution. When random variables have more than one dimension,
we can construct a joint probability distribution. Suppose we have two discrete random variables
X and Y . The joint probability distribution of X and Y is:

p(x, y) = P (X = x, Y = y) (18)

Conditional probability distribution
Second, the conditional probability distribution. Suppose we have two discrete random variables,

X and Y . The conditional distribution of X is the probability distribution of X holding constant
Y at some particular value.

p(x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
(19)

Marginal probability distribution
Third, the marginal probability distribution. Given the joint distribution, the marginal proba-

bility distribution is the probability distribution of a random variable irrespective of other random
variables. Marginalization means “aggregation” in probability theory which effectively makes the
distribution unconditional. Suppose we have two discrete random variables, X and Y , and the
joint distribution P (X,Y ), the marginal distribution of X is:

p(x) =
∑

y

P (X = x, Y = y) =
∑

y

P (X = x|Y = y)P (Y = y) (20)

Note that the marginalization for joint PDF requires integral, f(x) =
∫∞
−∞ f(x, y)dy. When the

random variables X and Y are independent, we can show that the joint distribution of X and Y is
the product of the marginal distributions of X and Y.

p(x, y) = p(x)p(y) (21)

5 Characterizing probability distributions

So far, we have discussed different types of probability distributions. We now turn our attention
to how to summarize the probability distribution.

5.1 Expected value

The expected value of a discrete random variable X is defined as

E(X) =
∑

x

xp(x) (22)

The expected value is essentially the weighted average of all realizations of a random variable,
weighted by their probabilities (relative occurrence). Note that we need to replace summation with
integral in the case of the expected value of a continuous random variable: E(X) =

∫∞
−∞ xf(x)dx.

Importantly, the expected value is a linear operator. That is, the expected value of the sum of
random variables is equal to the sum of their individual expected values and the expected value
scales linearly with a multiplicative constant:

E(X + Y ) = E(X) + E(Y ) (23)

E(cX) = cE(X) (24)
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A classic example of the expected value is the St. Petersburg Paradox. Suppose we toss a coin
infinitely. If a head is landed k times in a row, you’re given 2k dollars. Let X represent the expected
value of a dollar earned for this game. Then,

E(X) =
1

2
· 2 + 1

4
· 4 + 1

8
· 8 + 1

16
· 16 + · · ·

=

∞∑

k=1

2k × 1

2k

= +∞

The expected value of this gambling is infinite. How much money would you bet?

5.2 Variance

The variance of a random variable X is defined as

Var(X) = E((X − E(X))2) (25)

The variance gives a degree of dispersion/variability of the random variable X by measuring
how much observations are spread out from their expected value. A standard deviation of
X, σX is defied as

√
Var(X), which gives a measure of dispersion in the units of the random variable.

When we have multiple random variables, we can measure the joint dispersion/variability of
any pair of them. Suppose we have two random variables X and Y. Then, the covariance of X and
Y is:

Cov(X,Y ) = E(X − E(X)) E(Y − E(Y )) (26)

How to interpret the sign and the magnitude of the covariance of X and Y? If positive, X’s
variability is positively related to Y’s variability, meaning that X and Y move in the same
direction, e.g. X increases (decreases), then Y increases (decreases). If negative, X and Y move in
the opposite direction. The magnitude shows the degree of such co-movement of X and Y. If zero,
this means that X and Y do not move together.

5.3 Covariance and correlation

Covariance is not comparable across different sets of random variables. e.g. comparing the co-
variance of height and weight with the covariance of exercise and calorie burning. They can’t be
comparable due to the different units used in each variable. To do this, we need the covariance
of normalized/unit-free random variables. This normalized covariance is called correlation and is
defined as:

ρ(X,Y ) =
Cov(X,Y )

σXσY
(27)

= Cov

(
X − E(X)

σX
,
Y − E(Y )

σY

)
(28)

Note that (X − E(X))/σX is a handy standardization operator. It is standardization because the
mean of this operator is always 0 and the variance (and the standard deviation) is always 1.
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Since we measure joint variability of two standardized variables whose variance is 1, correlation is
always bounded between -1 and 1. (See Appendix A.2 for proof.)

Unlike covariance, correlation is comparable across different sets of random variables. Suppose
that the correlation between height and weight is 0.4, while the correlation between exercise and
calorie burning is 0.9. Since the correlation index is unit free, we can say that exercise and calorie
burning move much more in tandem compared to height and weight variables.

6 Well-known probability distributions

There are a number of well-established probability distributions, most of which will not be discussed
in this section. I will provide a detailed discussion of some distributions when we need to use them
later in the course, e.g. the Poisson distribution for Poisson regression. In this section, we will
discuss only several distributions briefly to give students a sense of how probability distributions
can be constructed from the underlying data-generating process and how they behave differently
with varying parameter values.

6.1 Discrete probability distribution

Binomial distribution
The binomial distribution is the probability distribution of n repeated Bernoulli trials with

success probability p, e.g. how many heads when tossing a coin n times. In this setting, a ran-
dom variable X represents k number of success, k = 0, . . . , n. We can show that the probability
distribution takes the form of

P (X = k) =

(
n

k

)
pk(1− p)n−k (29)

The expected value and the variance are E[X] = np and Var(X) = np(1 − p), respectively. See
Figure 8.

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10
n = 100

X

pr
ob

ab
ili

ty

p = 0.2
p = 0.5
p = 0.8

0 20 40 60 80 100

0.00

0.05

0.10

0.15

p = 0.5

X

pr
ob

ab
ili

ty

n = 20
n = 80
n = 140

Figure 8: Binomial probability mass function with varying parameters

Geometric distribution
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Another simple extension of the Binomial distribution is the Geometric distribution whose
underlying process is the same repeated Bernoulli trials with the success probability p. In the
Geometric distribution setting, what we are interested in is not the number of success out of n
trials, but the number of failures before the first success, e.g. the number of tails before the first
head when tossing a coin multiple times. 4 A random variable X represents k number of failures
for k = 0, 1, 2, . . . . The probability distribution takes the following form:

P (X = k) = (1− p)kp (30)

The expected value and the variance are E[X] = 1− p/p and Var(X) = 1− p/p2, respectively. See
Figure 9.
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Figure 9: Geometric probability mass function with varying parameters

Negative binomial distribution
An extension of the Geometric distribution is the Negative Binomial distribution whose under-

lying process is the same repeated failures before the success with the success probability p. In
the negative Binomial setting, we repeat the same process underlying the geometric distribution
and look at the number of failed trials before r-th success, e.g. how many tails before two heads
(r=2) when tossing a coin multiple times. A random variable X represents the k number of failures,
k = 0, 1, 2, . . . given r-th success. The probability distribution takes the following form.

Pr(X = k) =

(
k + r − 1

r − 1

)
(1− p)kpr (31)

The expected value and the variance are E[X] = rp/(1−p) and Var(X) = pr/(1−p)2, respectively.
See Figure 10.

6.2 Continuous probability distribution

Exponential distribution

4By symmetry, the number of success before the first failure gives the same distribution. For notational consistency,
we choose to use the number of failures before the first success.
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Figure 10: Negative binomial probability mass function with varying parameters
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The exponential distribution is the continuous analog of the geometric distribution. Here, in-
stead of the number of failure before the first success, we are interested in the duration of waiting
time before the first event occurring given the“rate” parameter λ representing the unit frequency
of events occurring.5 A random variable X represents the inter-arrival time x given λ:

f(x) = λe−λx (32)

The expected value and the variance are E[X] = 1/λ and Var(X) = 1/λ2, respectively. See
Figure 11.

Gamma distribution
The Gamma distribution is the continuous analogue of the negative-binomial distribution. Here,

instead of the number of failure before the r-th success, we are interested in the waiting time before

5As we will see later in the course, the parameter λ comes from the mean rate of the Poisson process.
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Figure 12: Gamma probability density function with varying parameters

the r-th success given the same λ parameter as in the exponential case. A random variable X
represents the inter-arrival time x before r-th event given λ:

f(x; r, λ) = λrxr−1e−λx

Γ(r) for x > 0 r, λ > 0, (33)

where r is often called shape parameter and Γ(.) is a gamma function: Γ(z) =

∫ ∞

0
xz−1e−x dx..

When r = 1, the Gamma distribution is equivalent to the exponential distribution. The expected
value and the variance are E[X] = r/λ and Var(X) = r/λ2, respectively. See Figure 12.
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Normal distribution
The Normal distribution is a distribution of the aggregate sum (or the average) of the random

variables. That is, when we draw n random numbers from any distributions and take the average
of them (and we repeat this many times), this average will converge to a Normal distribution. This
important property can be proven by the Central Limit Theorem, which will be sketched out later.
The Normal distribution has the following PDF

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

(34)

The expected value and the variance are E[X] = µ and Var(X) = σ2, respectively. See Figure 13.
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Figure 13: Normal (Gaussian) probability density function with varying parameters

21



A Some useful math

A.1 Binomial coefficient

The binomial coefficient refers to n!
(n−k)!k! =

(
n
k

)
, which is often read as “n choose k” and is called

the choose function of n and k.
(
n

k

)
=

n!

k! (n− k)!
=

n · (n− 1) · · · (n− k + 1)

k · (k − 1) · · · 1 if k ∈ {0, 1, . . . , n}, (1)

and,
(
n

k

)
= 0 if k > n.

This represents the number of ways that k elements can be chosen from among n elements, when
order is irrelevant, that is, the possible combinations of k length elements from a set with n
elements without considering the ordering of the combination. It can be also interpreted as the
number of different paths in the tree diagram for an n-sequence of Bernoulli trials for which the
number of successes is k.

A.2 Bounds for the Correlation Coefficient

Cauchy–Schwarz inequality implies that

|E(XY )|2 ≤ E(X2) E(Y 2). (35)

Using this inequality, we can prove ρ(X,Y ) ≤ 1. Let µx and µy be the mean of X and Y ,
respectively. Then,

Cov(X,Y )2 = [E((X − µx)(Y − µy))]
2

≤ E((X − µx)
2) E((Y − µy)

2)

= Var(X)Var(Y )

Therefore, Cov(X,Y )2

Var(X)Var(Y ) ≤ 1, and

−1 ≤ Cov(X,Y )√
Var(X)Var(Y )

= ρ(X,Y ) ≤ 1 (36)

A.3 Adam’s law and Eve’s law

Adam’s law: Law of total expectation
The expected value of unconditional a random variable X is the conditional expectation of X

on another random variable Y :

E(X) = E(E(X | Y )) (37)

Eve’s law: Law of total variance
The variance of a random variable X is the sum of the expected value of the conditional variance

of X on Y and the variance of the conditional expectation of X on Y :

Var(X) = E[Var(X | Y )] + Var(E[X | Y ]). (38)
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1 Data, measurement and descriptive data analysis

1.1 Examples of data

Data (plural) are anything that contains (partial) information about the state of affairs we are
interested in. They can be qualitative or quantitative, or a combination of both. See Figures 1, 2,
and 3 for examples of different types of data. Figure 1 is an example of survey data where
individual respondents provide information about their sex, age, education, income, and so forth.
This type of data is used to understand individual/group differences in questions of interest, e.g.
voting pattern, perception of political issues, or consumer preference. Figure 2 is an example of
corporate financial statements, which are widely used in financial analysis, while Figure 3 is an ex-
ample of US patent data which can be used to understand the evolution of technological ecosystems.

Sex Age Education Religion Income Ideology
1 female 54 college graduate protestant $75,000-$99,999 conservative
2 female 27 post-graduate other $100,000-$149,999 moderate
3 male 56 post-graduate roman catholic $150,000+ moderate
4 male 64 none roman catholic less than $10,000 conservative
5 male 50 college graduate protestant $75,000-$99,999 conservative
6 male 80 high school graduate roman catholic less than $10,000 liberal
7 male 38 college graduate roman catholic $50,000-$74,999 moderate
8 male 32 post-graduate roman catholic $20,000-$29,999 liberal
9 male 47 college graduate protestant $150,000+ conservative
10 female 99 some college protestant $75,000-$99,999 moderate

<latexit sha1_base64="TXGvdKyxrCAGls7tBuOd5pSqc9w="></latexit>

Figure 1: Survey data example.

Name Country Year Sector Sale
American Airlines USA 1992 4512 14396
American Airlines USA 2017 4512 42207
Pharmacia USA 1992 2834 7763
Pharmacia USA 2002 2834 13993
Canadian Imperial Bank CAN 1993 6020 10825
Canadian Imperial Bank CAN 2017 6020 20795
Alberta Energy CAN 1992 1311 569
Alberta Energy CAN 2001 1311 6312
Beijing Media CHN 2003 2700 129
Beijing Media CHN 2017 2700 61
China Petro & Chem CHN 2002 5500 37829
China Petro & Chem CHN 2018 5500 434995
Tempus Holdings CYM 2010 3845 27
Tempus Holdings CYM 2017 3845 107
Forbes Ventures CYM 2007 1000 0
Forbes Ventures CYM 2013 1000 0

<latexit sha1_base64="O99aS0xHYgJEx5HlqrNzNK4H9Os="></latexit>

Figure 2: Financial statement data example. Figure 3: Patent data example.

1.2 Noisy data and data cleaning

Sometimes, data reveal a great deal about the question of interest, e.g. detailed financial
statements of a corporate or security camera footage of criminal activities. But, in many cases,
data alone cannot give a clear picture of the object we want to study. Figure 4 showcases the
well-behaved data versus noisy data.
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Figure 4: Clear data vs. noisy data.

When data are noisy and do not seem to provide any clear information about the object, it
could be due to the fact that the object itself is the result of some complex underlying process.
For example, the data on IQ and wealth do not show a clear positive relationship (Zagorsky
2007), which makes sense since there are so many factors other than IQ that determine one’s
lifetime wealth. Often the case, however, data appear to be noisy due to some nonsensical
values that might’ve come from some human errors in data collecting and reporting process.
In this case, some efforts need to be spent cleaning data to get them ready for analysis. The
problem is that there is no general consensus as to how to clean data. Data cleaning is a grey
area in data science from which many research gets awry. For example, Rotemberg & White
(2017) notice that many studies based on establishment-level data such as the U.S. Census of
Manufactures use somewhat heavily cleaned data (removing many extreme outliers) whose results
are not robust under lesser data manipulation (without heavy winsorizing). Figure 5 shows brief
summary statistics comparing the original and winsorized data, which reveals substantial dif-
ferences in standard deviation and other quantile information both in gross output and value-added.
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Figure 5: Table from Rotemberg & White (2017) showing the difference between the original and cleaned
firm-level data.

Then, do we at least have some rules of thumb in cleaning data? Yes, the most important rule
is that we need to be transparent and honest about the data cleaning process. Everything needs to
be documented with no ambiguity so that others can easily replicate the same results with the same
data. An equally important rule is that we need to try hard to keep as much data as possible unless
there is conspicuous inconsistency in the data such as changes of data collection/reporting rules,
need for the construction of balanced panel, or highly unusual suspicious patterns in the data that
seem to come from arbitrary manipulation. Finally, it is important to check whether the results
substantially change with different degrees of data cleaning and report how sensitive the results are.

1.3 Descriptive data analysis

Another important rule is to visualize the data as much as we can. By doing so, we can get a
sense of whether data are noisy and perhaps why. This initial data summary/visualization is called
descriptive data analysis and includes summary statistics and overall distributions/time trends of
variables of interest. If data has more than one variable, we can also check the pair-wise relationship
between variables to see if there are any interesting relations among them. Figure 6 shows an
example of the descriptive data analysis for time series (left) and cross-sectional data (right). The
left panel is a time-series of 180 products included in the construction of the US consumer price
index. A quick visualization reveals that the pattern of price change is highly heterogeneous across
products. The right panel is the cross-sectional distributions of the firm-level labour productivity for
4 different industries in France, showing that the productivity in the financial sector is substantially
more dispersed compared to other sectors.

Descriptive data analysis sometimes leads to very insightful research. Often the case, high-
impact research is based only on descriptive analysis. A notable example is Piketty & Saez (2003,
2006) who collected large administrative datasets to study income/wealth inequality in the world.1

Figure 7 shows an example of descriptive data analysis using this income database.

1Please refer to https://wid.world for the latest data on inequality patterns in the major countries.
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Figure 6: Exploratory data analysis for time series (left) and cross-sectional data (right).

2 Hypothesis and model

2.1 All models are wrong

A hypothesis is a claim about a state of nature, and a statistical hypothesis is a claim about a state
of nature that can be tested with data. To validate the statistical hypothesis, we need statistical
models that refer to mathematically simplified procedures to approximate some aspects of a state
of affairs. It is important to keep in mind that all models are wrong since they approximate only
a partial aspect of the object. They are useful, however, in the sense that they can help us to
understand some complex nature of our hypothesis that is unknown to us prior to modeling.

2.2 Example of statistical hypothesis

Power-law hypothesis
Let’s take some examples to get a better sense of how data, hypothesis and model are related

to one another. Suppose we are interested in citations in scientific research and want to understand
its unequal structure where only a small number of papers get to be cited while the majority
are forgotten and get never cited. Here, our statistical hypothesis is that the citation network is
dominated by a small number of superstar papers. Since this is a statistical hypothesis, we need
data to test it. In this case, the data we are looking for are citation records of scientific publications.
How about a statistical model? There are multiple candidates each of which could highlight some
aspects of our hypothesis. In this example, let’s use a power-law distribution as our statistical
model. A power-law distribution takes the form of p(x) = kx−α where α is the power-law exponent
and k is a constant. To understand what this distribution looks like, suppose k = 1 and α = 2,
then we have p(x) = x−2 = 1/

√
x, meaning that when x increases substantially, its probability

decreases only by its square root. For example, the probability of x1 = 9, 000, 000 (a paper being
cited 9 million times) is only hundreds times unlikely than x2 = 900 even though x1 is 10,000
times greater than x2. This implies that the occurrences of some extreme phenomena are frequent
and thus the distribution has a heavy tail. If this power law distribution fits our data well, it
means that superstar papers are frequent so that a small number of papers dominate the citation
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III. Explaining the Results and Future Research

The fact that the drop in income concentra-
tion in the first part of the twentieth century is
primarily due to the fall in top capital in-
comes, and that the fall took place mostly
during wartime and the Great Depression in
most of those countries, suggests an obvious
explanation. For the most part, income in-
equality dropped because capital owners in-
curred severe shocks to their capital holdings
during the 1914 to 1945 period such as de-
struction, inflation, bankruptcies, and fiscal
shocks for financing the wars. This interpre-
tation is confirmed by available wealth and
estate data for countries such as France, the
United States, and Japan. Note that the idea
that capital owners incurred large shocks dur-
ing the 1914 –1945 period and that this had a

big impact on income distribution is certainly
not new (Kuznets, 1953). What is new is there
is not much else going on.

The more challenging part needing explana-
tion is the nonrecovery of top capital incomes
during the post-1945 period. The proposed ex-
planation is that the 1914 to 1945 capital shocks
had a permanent impact because the introduc-
tion of progressive income and estate taxation
(there was virtually no tax progressivity prior to
1914 and top rates increased enormously be-
tween 1914 and 1945) made it impossible for
top capital holders to recover fully. Simple sim-
ulations suggest the long-run impact of tax pro-
gressivity on wealth concentration is large
enough to explain the magnitude of the ob-
served changes (Piketty, 2003).

Those explanations about the dynamics of
capital income concentration could possibly be
tested by looking at the case of countries that
either did not experience large pre-1945 shocks
and/or did not implement significant and sustained
progressive income tax systems. Switzerland
stayed out of the wars and never implemented
very progressive wealth or income taxation. As
displayed in Figure 4, in contrast to other coun-
tries such as the United States, top wealth shares
in Switzerland hardly declined from 1913 to the
1960s.

It would be interesting to consider (a) coun-
tries that avoided the war or Depression shocks
but developed progressive taxation, such as
Ireland and Sweden; and (b) countries that ex-
perienced the shocks but did not develop pro-
gressive taxation. No European country falls

FIGURE 3. TOP-0.1-PERCENT INCOME SHARES ACROSS

COUNTRIES

Source: United States, Piketty and Saez (2003); United
Kingdom, Atkinson (2006); Canada, Saez and Veall
(2005); France, Piketty (2003); Japan, Moriguchi and
Saez (2005).

FIGURE 4. TOP-1-PERCENT WEALTH SHARE IN

SWITZERLAND AND THE UNITED STATES

Source: United States, Kopczuk and Saez (2004);
Switzerland, Atkinson and Piketty (2006).

203VOL. 96 NO. 2 MEASURING AND INTERPRETING TRENDS IN ECONOMIC INEQUALITY

Figure 7: Figure from Piketty & Saez (2006) showing the income share of the top 0.1% income earners in
the US, UK, and Canada.

network in scientific research. Figure 8 shows a power-law PDF (left panel) and two example
distributions of citations from Redner (1998) (right panel). Note that the power-law distribution
exhibits a straight line on a log-log scale. The power-law distribution does seem to fit the citation
distribution relatively well as the tail part of the distribution is roughly linear, suggesting that the
citation network is indeed dominated by a small number of papers.

Exercise and calories burning
Let’s take another simple example. Suppose we are interested in how exercise and calorie

burning are correlated. The basic hypothesis is that the more we exercise, the more calories we
burn. This hypothesis seems quite benign and we just need data on calorie consumption and the
duration of the exercise. However, when we get to the statistical model part, it gets slightly
complicated since there are a number of ways to model this relation. Do we want to use a linear
relation, like a straight line, suggesting that there are proportionally more calories burnt as we
exercise? What if there is some non-linear effect so that the calories do not burn as quickly as
before when we already exercised too much? How do we model individual differences in body
metabolism? Do we want to use a simple Gaussian error or some other error models? How do we
choose the best model among these many possibilities? To answer these questions, we need to
discuss estimation and model validation/comparison.

3 Estimation, model validation/comparison, and bias-variance
trade-off

3.1 Basic concepts

Let’s go back to a linear relationship between two variables. Suppose we are interested in a
very simple linear specification only with the intercept and the slope, which we call parameters
of a model. Now, how can we determine the actual value of these parameters? Equally
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Fig. 1. (a) Citation distribution from
the 783,339 papers in the ISI data
set (4) and the 24,296 papers in the
PRD data set (±) on a double loga-
rithmic scale. For visual reference, a
straight line of slope °3 is also shown.
(b) Same as (a), except on a semi-
logarithmic scale. The solid curves are
the best fits to the data for x ∑ 200
(PRD) and x ∑ 500 (ISI).

data points are widely scattered, reflecting the paucity
of well-cited papers. For example, in the ISI data, only
64 out of 783,339 papers are cited more than 1000 times,
282 papers are cited more than 500 times, and 2103 papers
are cited more than 200 times, with the most-cited paper
having 8907 citations. Such a sparsely populated tail is
not amenable to being directly fit by a smooth function.
(Amusingly (or soberingly) 633,391 articles in the ISI set
are cited 10 times or less and 368,110 are uncited.)
Another test to determine the functional form of N(x)

is to compare numerical values for the moments of the
citation distribution

hxki =

R
xkN(x) dxR
N(x) dx

, (1)

with those obtained by assuming a given form for
N(x). For example, if the citation distribution is a
stretched exponential, then the dimensionless ratios

Mk ¥ hxki/hxik = °
≥
k+1
Ø

¥
°
≥
1
Ø

¥k°1
/°
≥
2
Ø

¥k
, where

° (x) is the gamma function. Notice that the scale factor
x0 in the exponential cancels. For each k, an estimate for
Ø can be inferred by matching the value ofMk obtained
from the above gamma function formula with the corre-
sponding numerical data. For both the ISI and PRD data,
the corresponding estimates for Ø for k = 2, 3, . . . , 6 de-
pend weakly but non-systematically on k, and further do
not match the values for Ø obtained from a least-squares
fit to a stretched exponential (Fig. 1b). Similarly, the nu-
merical data for hxki also do not match a power-law form
for the citation distribution, N(x) ª x°Æ. These results
provide evidence that the citation distribution is not de-
scribed by a single function over the entire range of cita-
tion count.
More fundamentally, it is natural to expect diÆerent

underlying mechanisms and diÆerent statistical features
between minimally-cited and heavily-cited papers. The
former are typically referenced by the author and close
associates, and such papers are typically forgotten a short
time after publication. Evidence for such a short lifetime
of minimally-cited papers can be found, e.g., by comparing
the small-citation tail of N(x) for the first 4 years (1975-
79) and the last 4 years (1990-1994) of the PRD data
set. For x . 200, these data (appropriately normalised)
and the complete PRD data are virtually identical. On
the other hand, well-cited papers become known through

collective eÆects and their impact also extends over long
time periods. This is reflected in the significant diÆerences
among the large-citation tails of N(x) for papers of diÆer-
ent eras.
To help expose these diÆerences in the citation distri-

bution, it is useful to construct a Zipf plot [6], in which the
number of citations of the kth most-ranked paper out of
an ensemble ofM papers is plotted versus rank k (Fig. 2).
By its very definition (see Eq. (2)), the Zipf plot is closely
related to the cumulative large-x tail of the citation dis-
tribution. This plot is therefore well-suited for determin-
ing the large-x tail of the citation distribution. The inte-
gral nature of the Zipf plot also smooths the fluctuations
in the high-citation tail and thus facilitates quantitative
analysis.
Given an ensemble of M publications and the corre-

sponding number of citations for each of these papers in
rank order, Y1 ∏ Y2 ∏ . . . ∏ YM , then the number of cita-
tions of the kth most-cited paper, Yk, may be estimated
by the criterion [7]

Z 1

Yk

N(x) dx = k. (2)

This specifies that there are k publications out of the
ensemble of M which are cited at least Yk times. Equa-
tion (2) also represents a one-to-one correspondence be-
tween the Zipf plot and the citation distribution. From the
dependence of Yk on k in a Zipf plot, one can test whether
it accords with a hypothesised form for N(x).
In Figure 2a, a Zipf plot of the rank-ordered citation

data is presented on a double logarithmic scale for 4 data
sets: (a) ISI data (top 200,000 papers only), (b) complete
PRD data (24,296 papers), (c) first 4 years of PRD data,
vols. 11-18 (5044 papers), and (d) last 4 years of PRD
data, vols. 43-50 (5467 papers). As alluded to previously,
there is a considerable diÆerence between the first and
last 4 years of the PRD data. As might be anticipated,
the more recent highly-cited papers (up to approximately
rank 700) are cited less than papers in the earlier sub-
data. (There are two exceptions, however. These are the
two top papers in the first 4 years which are cited 1741 and
1294 times, while in the last 4 years of data the two leading
papers are cited 2026 and 1420 times.) The larger citation
count of heavily-cited older papers reflects the obvious fact
that popular but recent PRD papers are still relatively

Figure 8: Power law probability density function (left) and the distribution of the citations of 24,296 papers
n Physical Review D from Redner (1998). Both are on a log-log scale. Citation distribution from the 783,339
papers in the Institute for Scientific Information (triangle) and the 24,296 papers in the Physical Review D,
vols. 11-50 (circle). A straight line of slope 3 is also shown for visual reference in the left plane.

importantly, to which degree of accuracy can we determine such values? Determining the value
of model parameters is called an estimation problem while checking how accurately a model
explains/predicts the data is called a model validation problem. If there are multiple models,
quantifying the relative accuracy of these models and thus comparing their performance is called
a model comparison problem. As we will see throughout the course, there is a wide range of
procedures for parameter estimation, model validation, and model comparisons.

3.2 Example

To get a concrete example, suppose we have the data on X and Y as shown in Figure 9.
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Figure 9: Fake data of x and y

−1.0 −0.5 0.0 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x

y

Figure 10: Random regression line.

How many candidate models can we think of for these scatter plots? The simplest possible one
is a simple linear specification such that y = α + βx + ε where α is the intercept β is the slope,
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and ε is a Normal error term, ε ∼ N(0, σ2) (which determines the predicted dispersion of data
from the linear line.). After we estimate these three parameters (which will be discussed in detail
later in this course), we can draw a predicted line over the data as shown in Figure 10. It looks
ok but not too satisfactory. How about we make our model a bit more complex by adding more
terms as follows?

y = α+ βx+ β2x
2 + ε

y = α+ βx+ β2x
2 + β3x

3 + ε

y = α+ βx+ β2x
2 + β3x

3 + β3x
4 + ε

...

Each of the above equation has increasingly more degrees of freedom with an additional predictor.
We visualize the predicted lines in Figure 11. The left plane shows the linear models with 1-3
degrees of freedom and the right plan shows the models with 4-6 degrees of freedom.
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Figure 11: Regression lines with varying polynomial degrees.

Overfitting and bias-variance tradeoff
How can we decide which model among these is more consistent with data? We can see that

something quite interesting going on here. The more complex the model is (the higher polynomial
degrees), the better it fits the data. For example, the model with 6 degrees of freedom have all the
data points very close to the predicted line. So, the model in the bottom right appears to perform
the best. If this is the case, can we say that the most complex model is always preferable because
it always gives the best fit?

Here we encounter the issue of overfitting. To understand the pitfall of overfitting, we need
to distinguish the in-sample validation from the out-of-sample validation. When we determine
the model performance only using the data we use for model estimation, this is the in-sample
validation. In contrast, when we determine the model performance using the “future” data that
is not included in the current dataset, we call it out-of-sample validation. Complex models
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are very good at in-sample performance but are normally bad at out-of-sample performance,
simply because complex models are too tight and inflexible to accommodate the noisy reality
of the world. This is called bias-variance trade-off. That is, complex models have low bias
and explain the in-sample data accurately. But they are extremely sensitive to change in
the data set and thus have high variance in explaining future data (or another set of in-sample data).

To better understand this bias-variance trade-off, let’s generate a few more data points using
the exact same data generating process as above. We consider these data points to be “future”
data to see how well each of the models predicts these data points. We compare the polynomial
model with degrees of 2 and 6 in Figure 12.

−1.0 −0.5 0.0 0.5 1.0 1.5

2

4

6

8

x

y

degree = 2
degree = 6

old data
new data

Figure 12: Regression lines with polynomial degrees of 2 and 6, predicting new data points.

Obviously, the complex model with a degree of 6 performs poorly and its predicted line is far
away from the new data points. This is generally the case for most complex models. In contrast,
a simple model with a degree of 2 does a good job of predicting the new data points. Many model
comparison techniques have been proposed to account for both or in-sample and out-of-sample
validation, e.g. AIC, DIC, Cross-validation, some of which will be covered in this course.
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As we discussed in Topic 1, the probability is not a monolithic concept. Quite the contrary, there
are opposing views of the probability that lead to different procedures for statistical inference. The
most conventional one is what we call the classical/frequentist approach, which will be discussed
in great detail throughout the course. The lesser-known but equally important one is the Bayesian
approach and will be discussed in tandem with the classical approach. We will also introduce the
maximum likelihood approach since this is the most frequently used estimation method.

1 Overview of the classical approach

1.1 True data-generating process, repeated experiments, and estimator

The classical/frequentist approach refers to a broad set of statistical procedures based on
sampling theory. Classical statistical methods presuppose a true data-generating process or a true
model. Understanding this “true” nature of the state can be achieved by an infinite sequence of
trials/experiments. That is, if we can repeat the experiments infinitely many times (sampling
from the population), we can theoretically obtain the true nature of the state. In reality, we can’t
really repeat the same experiment forever and thus the data we have is always finite. Then, how
can we approximate the true data-generating process with finite trials?

Let’s unpack this using a simple statistical exercise. Suppose that we want to understand the
data-generating process behind the sequence of heads (H) and tails (T) generated by tossing a coin
multiple times, {H,T, T,H, . . . }. Here, the key part of the data-generating process is a probability
p of a head (which we call parameter), and a probability 1 − p of a tail by symmetry. Given the
probability p, we can easily calculate the probability of any sequence of H and T . Suppose we have
nH number of heads and nT number of tails in n total number of trials, n = nH + nT . Assuming
independence of each trial, the probability of seeing nH and nT is simply the binomial distribution

(
n

nH

)
pnH (1− p)n−nH (1)

Given this simple data generating process of coin tossing, what classical statisticians want is to
recover the true value of p that generates the sequence of heads and tails we are observing. Again,
we cannot do that simply because we do not have an infinite sequence of data. What we can do
instead is to find some function, which we call p̂, that is assumed to have the closest relationship
with the true parameter p. Classical statisticians call this proxy for a true parameter an estimator.

Desirable properties of an estimator
Then, what is the right estimator in our coin-tossing example? We can come up with many

different estimators that we hope to have some relationship with the true parameter. Classical
statisticians have a set of criteria to evaluate the quality of an estimator. Three key crite-
ria are unbiasedness, consistency, and efficiency. Let’s get some intuition for each of these concepts.

Unbiasedness: The expected value of an estimator is equal to the true parameter: E[p̂] = p

Consistency: An estimator converges to the true value as the size of data increases: p̂n → p in
probability as n → ∞ where p̂n is an an estimator of p with the sample size n.

Efficiency: The variance of an estimator is as small as possible, e.g. minE[p̂− p]2.
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A great deal about classical statistics is to mathematically prove whether a certain estimator
has these particular properties. The same goes for our coin-tossing example, a simple sequence
of Bernoulli trials. One natural choice of a function (of data) that has a close relationship with
the “true” probability of heads is p̂ = nH/n, a simple proportion of the heads in the data. We
can mathematically prove that this particular estimator is actually an unbiased, consistent, and
efficient estimator. We will get back to this point later in the course.

1.2 Sampling distribution and confidence interval

Setting aside these nitty-gritty properties of an estimator, let’s stop and think about how
much we can trust this estimator. Again, any estimator is a function of observed data,
like nH and n in our coin-tossing example. Suppose one extreme case where we have only
one observation (only one coin has been tossed) and we observe a head. Using the best
estimator we discussed above, we come to a conclusion that p̂ = nH/n = 1, that is the
coin is completely biased against a head. Does this really make sense? No, and it is highly
likely that our estimator p̂ might be considerably different from the true parameter p. This
simple exercise hints at one important point: we would be less confident about our estima-
tor when the sample size is too small. Then, how do we quantify our confidence about an estimator?

Repeated trials and sampling distribution
Here, we need some thought experiments. Suppose we are able to replicate the exact same

experiment many times and record the result of the quantity of our interest. We then take the
distribution of these multiple results from the repeated trials. If the sample size is small, this
distribution will be more widely dispersed, meaning that there is a high degree of sampling error.
In contrast, if the sample size is large and closer to the entire population, the distribution will
be less dispersed with a very narrow range, meaning that we have little sampling error and
thus the repeated experiments give a similar answer all the time. The classical statisticians
call this distribution from the repeated trials a sampling distribution. It is a theoretical (or
imaginary) distribution of whatever quantity of finite data at hand (statistic), e.g. its mean
or median, constructed by generating an infinite number of such quantity from the true
data-generating process. From this sampling distribution, the classical statisticians construct
a confidence interval, the tolerance range of the estimator given the pre-determined confidence level.

Let’s unpack this using a coin-tossing example. In this example, the quantity of data of
our interest is the proportion of heads, p̂, in a sequence of heads and tails. Then, the sampling
distribution of p̂ can be constructed by repeatedly calculating the proportion of heads from some
imaginary data of the same length generated from the true data-generating process of a coin
tossing. If we can repeat this process infinitely many times, we can get a sampling distribution.
Let’s simulate some of this process. Even though we will not be able to simulate it infinitely, we
can get some idea of how the sampling distribution of p̂ looks like. Figure 1 shows several different
numbers of trials of tossing a coin 100 times and recording the proportion of landing heads. The
number of trials varies from 100 to 100,000. As we increase the number of trials, the distribution
becomes more orderly with a clear shape. The sampling distribution is derived by repeating this
trial infinitely.

Some estimators statistical problems have a well-defined sampling distribution for estimators in
the sense that the distribution is analytically defined with a particular functional form. This is the

3
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Figure 1: Simulations of tossing a coin 100 times with varying number of trials.

case with a coin-tossing example. With a bit of math, we can show that the sampling distribution
of p̂ can be approximated by a normal distribution. This also can be shown by fitting a normal
distribution to the simulated sampling distribution with a large number of trials. Figure 2 shows a
normal distribution over the histogram of p̂ from 100,000 trials. As expected, a normal distribution
gives a good fit.

Determining confidence intervals
With a particular sampling distribution at hand, we are almost done with calculating a confi-

dence interval. We then need to specify what percentage of area under the distribution we want
to show. The percentage of area under the curve is called confidence level. By definition, the max-
imum confidence level is 100%, meaning that we want to use the entire range of the distribution
as our confidence interval. Practitioners in classical statistics often use 99%, 95% and 90% as rule
of thumb intervals. Let’s go back to the coin-tossing example. With a normal distribution as the
sampling distribution of p̂ and with a 95% confidence level, the confidence interval of the probability
of a head is distributed symmetrically around p̂ as follows:

p̂± 1.96

√
p̂ (1− p̂)

n
(2)

where n is the sample size. Again, it is important to note that this interval is derived from the

assumption that the sampling distribution follows a normal: p̂ ∼ N(p,
√

p(1− p)/n
2
). Note that

the variance of the binomial distribution is p(1 − p)/n.1 The derivation of this interval needs
standardization of the random variable so that p̂−p√

p(1−p)/n
∼ N(0, 1). Let’s do some sanity check

to see if this confidence interval makes sense. First, as we discussed, it is indeed a function of

1See Topic 1 for an overview of the binomial distribution.
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Figure 2: Simulations of tossing a coin 100 times with 100,000 trials. A normal fit is overlaid.

the estimator p̂ and the sample size, n. Second, as the sample size increases (decreases), the
confidence interval becomes smaller (larger).2 This means that when we have more data (larger
sample size), we can determine the range of the interval more narrowly.

Note that the confidence interval is not the interval of potential values of the quantity of our
interest. That is, a 95% confidence interval of p in our coin-tossing example is not a 95% range of all
possible values of p. This interpretation is simply not allowed in classical statistics since the whole
purpose of inference is to find the “true” value of p, a constant, with higher precision as possible.
Rather, a confidence interval should be interpreted as the range within which the “true” value of
our statistic lies when we repeat the same experiment indefinitely. Therefore, a 95% confidence
interval of p is the range where the true value of p lies with a 95% chance when we repeat the same
coin-tossing experiment many times.

1.3 Hypothesis testing

Hypothesis testing and the null hypothesis
Classical statisticians go one step further and make use of a confidence interval in evaluating

particular statistical hypotheses, which is often called hypothesis testing. The key idea is to derive
a confidence interval according to a certain hypothesis, often called the null hypothesis, and
check the value of the estimated parameter (derived from the observed data) and ask whether
this value lies within the corresponding confidence interval. For example, suppose we want to
test a statistical hypothesis that the coin is fair while the observed proportion of heads is 0.6
after 5 trials. Given the data and the predetermined confidence level, we can check whether this
hypothesis that the coin is fair p = 0.5 is consistent with the observed proportion 0.6.

P-value

2One caveat with this particular confidence interval for a repeated Bernoulli process is that the sample size n
cannot be too small and p̂ cannot be too close to 0 or 1 due to the required assumptions for a Normal approximation
to Binomial distribution.
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A standard procedure to check whether an observed value of our data is within the
given confidence interval is done by calculating its p-value and comparing it to a pre-defined
significance level. This p-value picks up a tail probability of the observed data given the
sampling distribution according to our null hypothesis. In the coin-tossing example, our null
hypothesis is “the coin is fair” and the test statistic of our interest is the proportion of heads
p, and, most importantly, we can construct the sampling distribution of this test statistic
by repeating the (fair) coin-tossing trials many times. Using the normal distribution as our

sampling distribution, we have p̂ ∼ N(p,
√

p(1− p)/n
2
), where p = 0.5 (null hypothesis that

the coin is fair) and n = 5 (the number of trials). We visualize the sampling distribution in Figure 3.
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Figure 3: A normal sampling distribution of the null
hypothesis that p = 0.5 with n = 5.
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Figure 4: A normal sampling distribution with p-
value.

Again, suppose the observed proportion of heads in our data is 0.6. Here, the p-value is the
probability of test results being equal to or greater than 0.6. Formally, the p-value is defined as
the probability that the test results are as extreme or more extreme than the observed data under
the null hypothesis sampling distribution

P (T (yrep)) > T (y|H), (3)

where T is a test statistic of our interest, e.g. mean, median or proportion of our data, yrep is
the test results obtained by repeating the same trials many times, y is the observed data, and H
is the null hypothesis. Visually, the p-value is the area under the distribution whose test results
are equal to or greater than the observed data. In our coin-tossing case, the p-value is the area
under the normal distribution greater than 0.6. Figure 4 shows the p-value for our coin-tossing trial.

To complete the hypothesis testing, we just need to compare the calculated p-value with the
pre-determined significance level (1-confidence level/100), often called α. If the p-value is smaller
than the significance level, we “reject” the null hypothesis. For our coin-tossing exercise, we can
calculate the p-value of p̂ = 0.6 by taking the integral over the area equal to or greater than 0.6,
which 0.023. Suppose our significance level is 0.05. Since the p-value is smaller than the given
α level, we reject the hypothesis that the coin is fair. This means that p̂ = 0.6 (the estimated
parameter from the data) is unlikely to result from our sampling distribution by chance given
that p = 0.5. However, if our α is 0.01, which is a more stringent criterion, we cannot reject our
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hypothesis that the coin is fair.

1.4 Remarks on p-value

Having a strict threshold for validating/falsifying a certain hypothesis might be useful when
we have to make a decision based on some statistical testing, e.g. policy recommendation.
Unfortunately, almost all statistical problems do not have a black and white answer and the grey
area is often too wide to draw any definite conclusions from. There are many reasons for this.
Data could be too noisy and complex and/or there is a wide range of different models for data.
When dealing with complex data and models, researchers face myriad decisions to make in every
step of statistical analysis, each of which will lead to different results in terms of p-value and the
statistical significance of the models.

The problem arises when the researchers modify the data selection process and/or try out
different model specifications until nonsignificant results become significant. This is called p-hacking
or data fishing. Unfortunately, there is no fundamental remedy to p-hacking since the dichotomous
aspects of the p-value is deeply embedded in the classical hypothesis testing. Recently, the focus
of statistical inference has moved from narrowly defined hypothesis testing to a broad set of model
validation based on out-of-sample prediction. Even when the hypothesis testing is used, it is often
supplemented by additional predictive checking to make sure that the model is not picking up
some random noise in the data. We will be discussing some useful model validation/comparison
techniques later in the course.

1.5 Examples of the sampling distribution for hypothesis testing

Without a question, a normal distribution is the most widely used sampling distribution for
hypothesis testing due to its generality resulting from the central limit theorem. See Topic 1 for
an overview of a normal distribution. Here, we introduce two more sampling distributions, each of
which will be used in different statistical problems/hypothesis testing.

Chi-square distribution
When we are interested in estimating the variance of the normally-distributed random variable,

the sampling distribution of the sample variance is the Chi-square distribution. This distribu-
tion is defined as a sum of the squares of k independent standard normal random variables. Let
Z1, Z2, . . . , Zk be a standard normal random variable N(0, 1) and let X = Z2

1 + Z2
2 , . . . ,+Z2

k , the
PDF of X is

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2 for x ≥ 0 (4)

The expected value and the variance are k and 2k, respectively. k is known as the degrees of
freedom and determines the shape of the distribution. Figure 5 shows the Chi-Square PDF with
varying degrees of freedom.

Student-t distribution
When we are interested in estimating the mean of a normally-distributed random variable with

unknown variance (especially with small sample size), the sampling distribution of the mean is
Student’s t-distribution. It has a heavier tail than the normal distribution and thus can reflect a
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Figure 6: Student’s t probability density function
with varying parameters of the degrees of freedom
k.

higher uncertainty in estimating the mean when the variance is unknown with small sample size.
The t-distribution is defined with respect to the (standard) normal distribution and the Chi-square
distribution. Let Z ∼ N(0, 1) and V ∼ χ2

k, then the student-t distribution is

Z√
V/k

(5)

Note that when the degree of freedom is 1, the distribution becomes pathological and the mean and
the standard deviation are not defined. When k > 1, the mean is zero and the standard deviation
is either k/k − 2 when k > 2 or infinity when 1 < k < 2. Figure 6 shows the Student’s t PDF with
varying degrees of freedom.

1.6 Example

Figure 7 shows the histograms of annual price change for four different products: integrated mi-
crocircuits, personal computer, eggplants, and wastepaper. The mean annual price change for all
products (red line) is below zero (black dotted line). However, the price change of the first two
products is systematically below zero while that of the other two products fluctuates around zero.
How can we statistically determine that the mean price change of each product is different from
zero?

A standard approach from the classical point of view is

(i) Define the test statistics

(ii) Derive the sampling distribution of the test statistics

(iii) Set up a hypothesis regarding a specific value of the test statistics

(iv) Decide the confidence level (α) to reject/accept the hypothesis

8



Integrated Microcircuits

price change

F
re

qu
en

cy

−0.20 −0.15 −0.10 −0.05 0.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Personal Computer

price change
F

re
qu

en
cy

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

0

1

2

3

4

5

Eggplant

price change

F
re

qu
en

cy

−0.4 −0.2 0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Wastepaper

price change

F
re

qu
en

cy

−0.6 −0.4 −0.2 0.0 0.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 7: Histogram of product price changes for four products from US Consumer Price Index (CPI). The
red solid line represents the mean price change and the black dotted line represents 0.

(v) Calculate the p-value using the data and compare the p-value with the pre-determined con-
fidence level

For this problem,

(i) the test statistics is the mean price change, which we will denote by X̄. We will be assuming
that X̄ is normally distributed with mean µ and the standard deviation

√
σ/n (due to the

central limit theorem). Both µ and σ are unknown and need to be estimated.

(ii) In this setting, we can show that the sampling distribution for the estimator of µ, µ̂, follows
the student’s t distribution.3

(iii) The null hypothesis is that the mean price change is zero: µ = 0.

(iv) Suppose the confidence level is 5% (α = 0.05).

(v) Using student’s t distribution as a sampling distribution and with the null hypothesis µ =
0, the p-values for each of 4 sets of the observed data of price changes are 0.0003846,
0.00000001787, 0.7348, and 0.2615, respectively. When comparing these p-values with α =
0.05, the first two p-values are smaller and the latter two p-values are bigger.

Therefore, we reject the hypothesis that µ = 0 for the first two products (integrated microcircuits
and personal computer) but can’t reject it for the latter two products (eggplants and wastepaper).

2 Overview of maximum likelihood approach

2.1 Definition of MLE

Statistical problems as counting
Sometimes, it is easier to think of statistical problems as counting up all the ways data can

happen according to given hypotheses. For example, suppose we have a bag of four balls with two
different colors of black and white, and we want to guess the number of black balls in a bag after
drawing three balls without replacement. Suppose we drew two black balls and one white ball.
Since there are 4 balls in total, 5 hypotheses are i) 4 black balls and 0 white ball, ii) 3 black balls
and 1 white ball, iii) 2 black balls and 2 white balls, iv) 1 black ball and 3 white balls, and v) 0

3See Topic 4 for a more detailed discussion on this in the context of linear regression.
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black ball and 4 white balls. For each hypothesis, we can count up all the ways the observed data
of two black balls and one white ball can happen as follows:

(i) 4 black balls and 0 white ball:
(
4
2

)(
0
1

)
= 0

(ii) 3 black balls and 1 white ball:
(
3
2

)(
1
1

)
= 3

(iii) 2 black balls and 2 white balls:
(
2
2

)(
2
1

)
= 2

(iv) 1 black ball and 3 white balls:
(
1
2

)(
3
1

)
= 0

(v) 0 black ball and 4 white balls:
(
0
2

)(
3
1

)
= 0

We can see that the hypothesis of 3 black balls and 1 white ball has more ways to realize the
observed data and thus more probable/plausible. The maximum likelihood estimation (MLE) is
nothing but finding the hypothesis that is most likely and thus has the greatest number of ways
to realize the observed data.

Formal definition of MLE
Formally, the MLE is a statistical procedure that finds the point estimate of parameters by

maximizing a likelihood function associated with them. Let’s unpack this one by one. The likelihood
is defined as the probability of data given hypotheses, that is, the number of ways the data can
realize according to hypotheses:

p(y|θ) (6)

where y is data and θ is hypotheses. Note that this likelihood is a function of hypotheses, meaning
that the function takes varying hypotheses as input and gives a likelihood value for each hypothesis,
which can be understood as a relative probability that can be compared across different hypotheses.
However, the likelihood itself is not a proper probability distribution because its sum with respect
to θ (the sum of all likelihood values for all hypotheses) is not 1. To highlight its difference from a
probability distribution, a standard notation for the likelihood function uses L as follows:

L(θ|y) (7)

This notation makes it more clear that the likelihood function is a function of hypotheses θ given
data y. For each hypothesis, L(θ|y) is calculated by taking the joint probability of data, which can
be expressed as the product of all probabilities of data given the hypothesis:

∏n
i p(yn|θ). Among

all the likelihood values for all hypotheses in the parameter space Θ, the MLE finds the hypothesis
θ̂ that has the maximum likelihood value4

θ̂ = arg max
θ∈Θ

L̂n(θ |y) (8)

2.2 MLE and optimization algorithm

Then, how can we find the maximum likelihood value? In principle, when the likelihood function
is differentiable, we can find the first-order condition L

′
= 0 and check the second-order derivative

is negative L
′′
< 0. However, for the vast majority of statistical problems, taking the first and

4Note that max f(x) represents the maximum value of f(x) while arg max f(x) represents the value of x at which
the maximum of f(x) is attained.
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the second derivative is extremely challenging or such derivatives might not exist. In this case, we
need to rely on numerical optimization to find the maximum value numerically, not analytically.
There is a wide range of optimization algorithms that help us to guess the maximum/minimum of
a likelihood function. Going through these algorithms in detail is beyond the scope of this course.
Instead, we will directly implement some of these algorithms in the MLE examples we will discuss
in this course.

2.3 Normal approximation to MLE estimators

Before we discuss some examples of MLE, let us quickly point out one missing block in our MLE
approach, that is the interval estimation in the MLE, e.g. confidence interval. One of the most
important properties of the maximum likelihood estimator is that, under certain conditions, the
maximum likelihood estimator converges in distribution to a normal distribution. This means
that we can easily construct a confidence interval by using the normal distribution as a sampling
distribution as we discussed above.5

2.4 Example

We now turn our attention to an example of how to implement the MLE in actual statistical
problems. Let’s revisit our coin-tossing example above where we tried to find the true p (the
probability of a head) using the observed proportion of landing heads as the estimator p̂. We
had the proportion of landing heads = 0.6 with n = 5, meaning 3 heads out of 5. In the MLE
framework, each possible value of p̂ is a hypothesis to which a certain likelihood is assigned. To get
some intuition of how this works, let’s manually calculate the likelihood for some plausible values
of p̂, using the binomial PMF, P (X = k) =

(
n
k

)
pk(1− p)n−k

(i) Suppose p̂ = 0.4. Then, having 3 heads out of 5 is P (X = 3) =
(
5
3

)
0.43(1− 0.4)5−3 = 0.230

(ii) Suppose p̂ = 0.45. Then, P (X = 3) =
(
5
3

)
0.453(1− 0.45)5−3 = 0.276

(iii) Suppose p̂ = 0.5. Then, P (X = 3) =
(
5
3

)
0.53(1− 0.5)5−3 = 0.312

(iv) Suppose p̂ = 0.55. Then, P (X = 3) =
(
5
3

)
0.553(1− 0.55)5−3 = 0.337

(v) Suppose p̂ = 0.6. Then, P (X = 3) =
(
5
3

)
0.63(1− 0.6)5−3 = 0.346

(vi) Suppose p̂ = 0.65. Then, P (X = 3) =
(
5
3

)
0.653(1− 0.65)5−3 = 0.336

(vii) Suppose p̂ = 0.7. Then, P (X = 3) =
(
5
3

)
0.73(1− 0.7)5−3 = 0.309

(viii) Suppose p̂ = 0.75. Then, P (X = 3) =
(
5
3

)
0.753(1− 0.75)5−3 = 0.264

(ix) Suppose p̂ = 0.8. Then, P (X = 3) =
(
5
3

)
0.83(1− 0.8)5−3 = 0.205

Among the 9 hypotheses listed above, the hypothesis of p̂ = 0.6 has the highest likelihood, meaning
that this is most consistent with the observed data. Figure 8 visually shows the likelihood of more
hypotheses: 0 < p̂ < 1, also confirming that p̂ = 0.6 has the highest likelihood and is most likely.

5Finding the sampling distribution of the MLE estimators involves finding variance-covariance matrix, which needs
to be calculated by the inverse of the Information matrix, the negative of the expected value of the Hessian matrix.
A detailed discussion on this requires some matrix algebra and thus will not be covered in the course.
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Figure 8: Likelihood function for a coin tossing with n = 5.

This result implies that the MLE estimator is equivalent to the classical estimator for p that
uses the proportion of heads, p̂ = nH/n. For this simple binomial case, we can mathematically
derive the MLE estimator and show that it is equal to nH/n.

The likelihood function for the binomial trial can be written as follows.

L̂n(p |x, n) =

n∏

i

(
n

xi

)
pxi(1− p)n−xi

=

(
n∏

i

n!

xi!(n− xi)!

)
p
∑n

i xi(1− p)n−
∑n

i xi

It is often more convenient to work with the log-likelihood since a summation is more tractable
than multiplication from the computational perspective. The log-likelihood function for the bino-
mial trials is written as follows

l̂n(p |x, n) =
n∑

i

xi log(p) +

(
n−

n∑

i

xi

)
log(1− p) + C (9)

where l̂n represents a log-likelihood function and C =
∑n

i log(
n!

xi!(n−xi)!
) is a constant. Therefore,

the MLE for the binomial trials boils down to solving the following maximization problem

p̂ = arg max
p

l̂n(p |x, n) (10)

The solution can be found by taking the first derivative of this log-likelihood function with respect
to p and set it to zero

∂l̂n(p |x, n)
∂p

=
1

p

n∑

i

xi +
1

1− p

(
n−

n∑

i

xi

)
= 0

p̂ =

∑n
i xi
n

(11)

The result shows that the MLE estimators for p̂ is exactly the same as the classical estimator we
discussed above.
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3 Overview of Bayesian approach

3.1 Prior information

The likelihood-based approach we discussed above is nothing but counting up all the ways that
data can realize according to hypotheses. A Bayesian approach goes one step further and utilizes
prior knowledge about the degree of plausibility of some hypotheses. For example, suppose you
have never seen any biased coins in your life and you are asked to estimate the probability
of heads after seeing 3 heads out of 5 tossings as above. Unlike the simple MLE procedure,
you want to use your prior information that you haven’t seen any biased coins and put less
weights on the probability that p is really close to either 0 or 1. For another example, suppose
that there is a well-established medical trial where the effectiveness of a certain drug has been
tested. The initial test showed that the drug can be effective 8 out of 10 times. Then, you’re
asked to try the same drug for different patient groups. How would you utilize the prior test
results in your new experiment? Finally, suppose you have a highly complicated model, which
you believe provides good insight into the problem you’re grappling with. The issue is that the
model is too complicated so you can’t really estimate its parameters. However, you know that
some values of the parameters are not feasible in the real world and can be excluded from the
beginning, which will help the model implementation a lot easier. As we will see in this section, a
Bayesian approach enables us to make use of the prior information/knowledge/assumption (prior
to experiments) in our statistical inference in a systematic manner.

3.2 Bayes’ theorem and Bayesian inference

One great advantage of using a Bayesian approach lies in its conceptual simplicity and coherency.
This strength comes from the fact that the Bayesian method starts and ends with a very simple
probability rule, called Bayes’ theorem:

P (θ|y) = P (θ)P (y|θ)/P (y), (12)

where θ represents hypotheses and y is data. The ultimate goal of the Bayesian statistical
analysis is to get P (θ|y), the posterior probability of hypotheses given data. Its literal meaning is
the probability of our guess about the state of affairs (hypotheses) when we have some partial
evidence of it (data). When working with the probabilistic form of hypotheses (“parameters as a
random variable”), we can get the degree of plausibility of a set of all hypotheses. Notice how
this approach considers θ to be a random variable while the classical or frequentist approach
considers θ to be a constant (unknown). For example, suppose we have 15 balls with two different
colors of black and white in an urn and we want to guess how many black balls are in the urn
after drawing 5 balls from it. In this experiment, θ is the number of black balls in the urn and
y is the color of 5 balls we have drawn. Here, Bayesians assign a probability to each of all
16 hypotheses from # of black ball = 0 to # of black ball = 15, after observing how many
black balls drawn from the urn. Note that each outcome has its own probability and the sum
of all probabilities should be 1, meaning that P (θ|y) is a proper probability distribution. By
forming a probability distribution of our hypotheses, we can quantify how plausible each of these
hypotheses is given data (or put it differently, how consistent each of these hypotheses is with data).

Then, what is the underlying assumption that makes it possible to form a probability
distribution of hypotheses? The fact that we can assign a probability to each of all
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possible outcomes implies that there is no single true state of affairs (or “true” model).
All outcomes/hypotheses have the potential to happen but with different probabili-
ties. This puts the Bayesian approach in stark contrast to the Classical approach where
the goal of statistical analysis is to find the true model that presumably generates the observed data.

How can we get P (θ|y)? As the Bayes Theorem shows above, we need three different
probabilities, P (θ), P (y|θ), and P (y).

Prior distribution
P (θ) is called the prior distribution of θ and represents the prior knowledge about our

hypotheses before we observe data. The issue is that it is often difficult to agree on universally
accepted prior belief (or objective prior) for statistical problems at hand even though different
prior specifications can lead to different statistical inference in the end. Many people find it rather
uncomfortable with this “subjective” aspect of the prior belief. However, it has become clear that
many classical statistical techniques as well implicitly use prior belief in one way or another as is
in the case of “regularization.” At a more fundamental level, every single step in the statistical
modeling, regardless of whether classical or Bayesian, comes from the non-objective grounds such
as subjective belief, widely-used conventions, or computational considerations. In a sense, the
prior is part of the model, or the part of the statistical assumptions. It does not have to be label
as “subjective” or “objective.” Finally, it is worthwhile to mention that it has become clear that
prior assignment of probability is extremely useful when dealing with highly complex models.

Likelihood and posterior
P (y|θ) is the likelihood function as Equation 6. It is often called a “model” since it connects

the hypotheses and data by giving the probability of observed data according to hypotheses.6 Note
that the product of prior and likelihood is not a proper probability distribution. Therefore, we
need a normalizing constant to make P (θ)P (y|θ) sum up to one with respect to θ. The summation
of P (θ)P (y|θ) is just P (y) by the law of total probability. That is, deviding P (θ)P (y|θ) by P (y)
makes the posterior distribution, P (θ|y), a proper probability distribution.7 With these three
probabilities, we can construct the posterior probability distribution of our hypotheses. The role of
these three probabilities will be more clear in the examples we will discuss throughout the course.

3.3 Example

To close on the topic of competing methods, let’s repeat the same coin-tossing example as above
using the Bayesian method. The Bayesian treatment of the Binomial trial is very similar to that
of the MLE since they share the same likelihood function. However, in the Bayesian framework,
i) there is a prior distribution for the parameter p and ii) the estimation result comes in the form
of a probability distribution (the posterior distribution), not as a point estimate. As before, the
likelihood of p is the binomial distribution with 5 trials and the parameter p to be estimated while
the prior needs to be determined:

x ∼ Binomial(n = 5, p)

p ∼ to be determined

6This convention that we call the likelihood a model is somewhat unfortunate since it gives a wrong impression
that the prior is external to the model. As we discussed in the prior section, the prior distribution is a statistical
assumption and thus is part of the modeling procedure.

7P (y), which is often called “evidence” plays a very important role in model selection from the information-
theoretic perspective.
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Beta prior
Depending on what priors we use, the posterior distribution (as the normalized product of the

likelihood and prior) will be determined. To highlight the impact of prior distributions, let us try
different priors and how this makes difference in the posterior distributions of p. Note that the
prior on p needs to be bounded between 0 and 1 since p is the “probability” (of landing heads).
One of the most widely used prior for p is the Beta distribution.8 The Beta distribution is a
continuous probability distribution defined on the interval [0, 1] with the following PDF with two
positive shape parameters α > 0 and β > 0:

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where Γ(.) is the Gamma function, Γ(z) =

∫ ∞

0
xz−1e−x dx. The expected value and the variance are

α
α+β and αβ

(α+β)2(α+β+1)
, respectively. Figure 9 shows the Beta distribution with varying parameter

values of α and β. Note that Beta(1, 1) is equivalent to the uniform distribution between 0 and 1,
as shown in the black line in the left panel.
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Figure 9: Beta probability density function with varying parameters.

Posterior as a compromise between likelihood and prior
Now, we can evaluate the impact of different priors on the posterior distribution. We choose

four priors: i) Beta(1,1), which is a uniform distribution between 0 and 1, ii) Beta(5,5), a
symmetric distribution centered at 0.5, iii) Beta(2,5), a right-skewed distribution whose mean is
around 0.3, and vi) Beta(5,2), a left-skewed distribution whose mean is around 0.7. Figure 10
visualizes these priors (green) along with the resulting posterior distributions (red). The posterior
distribution with the uniform prior is in black in the top-left panel. The likelihood function is
added as a reference point in grey. The dotted vertical line represents the mode of each of the
distributions (the peak of the distribution).

The impact of the prior is as predicted. The posterior with the uniform prior is exactly the
same as the Binomial likelihood in Figure 8. This is generally true and the Bayesian estimation

8As we will discuss later in the course, the Beta distribution is the conjugate prior probability distribution for the
binomial model meaning that the posterior distribution yields the same functional form of the prior.
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with a uniform prior (or more broadly non-informative prior) is equivalent to the MLE. The
symmetric prior, B(5,5), moves the posterior distribution slightly left to the likelihood function.
The right-skewed prior, B(2,5), moves it to further left. Finally, the left-skewed prior, B(5,2),
moves the posterior to the right. In all cases, the posterior distribution is a compromise between
the prior distribution and the likelihood function.
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Figure 10: Posterior distribution of the probability of landing a head with different priors.

It is worthwhile to emphasize again that the estimation result comes in the form of a
probability distribution not as a point estimate. This posterior distribution is different from the
classical sampling distribution from which the confidence interval is constructed. In the sampling
distribution, the given interval (confidence interval) is not the interval of the potential values of
the quantity of our interest, p. Rather, the confidence interval is the range where the true value of
the quantity of interest (p in our case) lies with a pre-defined confidence level when we repeat the
same experiment many times. In contrast, the interval in the posterior distribution, which is often
called the uncertainty interval or credible interval is indeed the interval of all possible values of
the quantity of interest. The posterior distribution just assigns relative weights to each of these
outcomes and, by doing so, provides information as to which hypothesis (among many possible
outcomes of p, for example) is more consistent with our data and prior knowledge.

Beta posterior
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The same Bayesian estimation procedure with a Beta prior can be illustrated analytically. With
the prior on p, p ∼ Beta(α, β), and ignoring the constant,

p(p|x) ∝ p(p|x)p(p)
∝ px(1− p)n−xpα−1(1− p)β−1

= px+α−1(1− p)n−x+β−1

This shows that the posterior distribution of p is another beta distribution
p|x ∼ Beta(α + x, β + n − x), the same functional form of the prior p ∼ Beta(α, β),
with updated parameters.

However, many modern statistical problems are highly complex and it is extremely hard to find
the set of priors leading to analytically solvable posterior distributions. Instead, we need some
simulation methods to approximate the posterior distribution. Luckily, advances in computations
and algorithms allow us to numerically obtain the posterior distributions like in Figure 10, so the
statistical analysis on the estimated values can be accomplished. We will discuss how this simulation
method works with examples in the latter part of the course.
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1 Examples of linear predictions

Since we have established a basic framework for statistical inference, let us address some of the key
statistical problems, starting with linear regression analysis that addresses a linear relation between
two or more variables. Before we start, let’s take a look at two examples of a linear relationship in
data.

1.1 Income inequality and voting pattern

Figure 1 shows a linear relationship between the voter’s income level and the voting tendency
toward Republicans among different ethnic groups in the 2008 US presidential election (Gelman
et al. 2010). There is a clear linear pattern among all different ethnic groups suggesting that the
richer you are, the more likely you will vote for Republicans. Also, note a significant variation
of the overall voting share of the Republican candidate across ethnic groups. For example, black
people rarely vote for the Republican across all income groups. This group effect/variation in the
linear relationship will be discussed in Topic 5 where we will introduce a multiple linear regression
model.
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FIGURE A-2

John McCain’s Share of the Two-Party Vote by Income, Among Different Ethnic
Groups, as Estimated from a Model Fit to Pew Research Center Polls Conducted

During the Campaign

NOTE: The income categories correspond to family income below $20,000,
$20,000–$40,000, $40,000–$75,000, $75,000–$150,000, and above $150,000.
We saw similar patterns in 2000 and 2004 exit polls. The area of each circle is
proportional to the number of voters in the category.

Income Inequality and Partisan Voting in the United States 1215

Figure 1: Voting pattern vs. income level from Gelman et al. (2010) Republican John McCain’s vote share
during the 2008 United States presidential election versus income level, among different ethnic groups (Pew
Research Center Polls). The size of each circle is proportional to the number of voters in the category.

1.2 Corruption and economic growth

Figure 2 shows a relationship between corruption perceptions index (CPI) and the GDP per capita
at a country level (Podobnik et al. 2008). There is a clear linear association between these two
variables, suggesting that the more corrupt a country is, the slower its economic growth. It is
worthwhile to mention that this linear association itself does not tell much about the specific
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dynamics of how this relationship could happen. It is however a good starting point for such
further analysis. For example, the authors of this paper took a further look at the relationship
between foreign direct investment and the corruption level and found that less corrupt countries
receive more foreign investments, which could lead to more economic growth.

548 The European Physical Journal B

Table 1. Rank of countries (left column) by Transparency
International for year 2006 with CPI values (right column) for
each country.

1 Finland, Iceland, New Zealand 9.6
4 Denmark 9.5
5 Singapore 9.4
6 Sweden 9.2
7 Switzerland 9.1
8 Norway 8.8
9 Australia, Netherlands 8.7
11 United Kingdom 8.6
16 Germany 8.0
17 Japan 7.6
18 France, Ireland 7.4
20 Belgium, Chile, USA 7.3
37 Botswana 5.6
40 Italy 5.0
70 China, India, Mexico, Brazil, Senegal 3.3

Ghana, Egypt, Peru, S.Arabia,
121 Russia 2.5

CPI values obtained in 2006 as well as some other coun-
tries. Besides some Western European countries, among
the least corrupt ten countries are New Zealand, Singa-
pore, and Australia. Chile and Botswana are the least
corrupt countries in South America and Africa, whereas
Singapore is the least corrupt Asian country. Table 1 pro-
vides information about corruption levels throughout the
World in absolute terms, where each country, whether rich
or poor, is given only its CPI value.

In the modern economy, globalization leads to eco-
nomic competition and comparison between countries, so
we compare the corruption levels for different groups of
countries in the world. Normalizing the CPI value for
year 2006 on the population in each country [13], we find
a normalized CPI value for the world to be 3.7, for the
countries in Europe we find 5.4, for Asia and Latin Amer-
ica we find 3.3, and for Africa 2.7.

An earlier study reported a power-law functional de-
pendence between GDP per capita, GDPpc, and CPI for
all countries [5]:

CPI = N (GDP pc)
µ (1)

with scaling exponent µ ≈ 0.23 (see Fig. 1), and constant
N = 0.548. This functional dependence spans multiple
scales of wealth and remains stable over different time
periods. The positive value of exponent µ indicates that
richer countries are less corrupt. This power-law depen-
dence provides information about the expected level of
corruption for a given level of country wealth — e.g., a
country above (or below) the fitting line is less (or more)
corrupt than expected for its level of wealth. We may say
that for a country above the fitting line the level of corrup-
tion is less than the expected level for the given country
wealth [5].

This previous finding indicates that in order to com-
pare the corruption level between two countries, countries
may be compared not only in terms of absolute CPI val-
ues but also in terms of relative country wealth. To this
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Fig. 1. Corruption level measured by Corruption Perceptions
Index (CPI) versus country wealth measured by GDP per
capita calculated for 2006 (in US dollars). We find the func-
tional dependence can be fit by a power law 0.56 (GDPpc)

0.23

with positive exponent. The power law fit in log-log plot repre-
sents the expected level of CPI for a country with given GDP
per capita. The countries that are above the line are less cor-
rupt than expected. We define a new index, Honesty per Dollar
(Hpd) to measure relative performance of a country when CPI
and GDP per capita are simultaneously considered. Besides
the USA, UK, Greece, and Italy, we show the countries with
the extreme Hpd values, Bhutan and Equatorial Guinea (oil
exporter).

end, we introduce a new measure of relative corruption
which we call Honesty per Dollar (Hpd):

Hpd = ln(CPI)− µ ln(GDPpc)− lnN, (2)

equal to the difference between the actual CPI value and
the value of CPI expected from the power-law fitting line
(Fig. 1), where N is defined in equation (1).

We assume that all countries, with similar GDP per
capita and falling on the power-law fitting line in Figure 1,
have comparable levels of corruption when (Hpd = 0).
Generally, the larger the value for Hpd, the better the per-
formance of a country. For 2006 based on regression of the
data for the entire world, we can calculate the values of
the Hpd index for individual countries: Hpd(UK) = 0.29,
Hpd(USA) = 0.1, Hpd(Italy) = −0.23, Hpd(Greece) =
−0.3. The negative values of Hpd index for Italy and
Greece, indicate that these two countries are relatively
more corrupt than expected for their corresponding level
of wealth (GDP per capita).

One of the reasons for a country to reduce corrup-
tion is to attract more foreign investments, and thus to
additionally increase its GDP . This is because corrup-
tion generally increases start-up costs for new businesses.
If investors can choose between two countries with dif-
ferent levels of corruption, they may choose not to start
their business in a more corrupt country since the profit
in that country will be reduced. In the previous study we
have analyzed how the corruption level relates to foreign

Figure 2: Corruption perceptions index (CPI) vs. economic growth from Podobnik et al. (2008). For the
CPI, the lower the number, the more corrupt the country is.

2 Simple linear regression model: one predictor and one response
variable

Regression analysis addresses particular statistical hypotheses about the relations/associations
between variables. In this section, we will examine hypotheses about the linear relations only.
This is obviously a tremendous simplification since there are infinitely many more non-linear
relations than the linear ones in the real-world. However, linear regression models can serve as
a very good starting point for a systemic understanding of the relationship between variables
without sacrificing computational efficiency.

Assume that we have a sample of n observations on two variables, which we denote by x and
y. The standard set up selects an outcome variable (or dependent/response variable) y and makes
it a linear function of a predictor (independent variable) x:

y = α+ βx+ ε, (1)

where α and β are called intercept and slope parameters(or coefficients) respectively. This
is because α is a y-intercept that shifts the value at x = 0 up and down on an x − y plane,
while β represents the slope of the linear line, which represents the marginal increase of
y when x changes by one unit, or the marginal impact of x on y, dy/dx. Note that this
geometric interpretation is not entirely straightforward when we have higher-order terms in
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the linear equation or when we have multivariate relationships, but it gives good enough
intuition for a simple linear relationship between two variables. Before we get to the error
term ε, let’s take a quick look at one example of a linear relation between x and y in the left
panel of Figure 3. It is clear from the figure that there is a linear relation between x and
y. Then, let’s draw some random linear lines over the same data points in the right panel of Figure 3.
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Figure 3: Linear relation between x an y. The right hand figure adds random linear lines to the scatterplot.

Which line best summarizes the linear relationship between the two variables? What are the
criteria for your judgment? Here comes the error term ε = y−α−βx, which plays a very important
role in providing some criteria for the fit of the linear line. The standard set up for the error term
is to assume that the errors (or disturbances) are independent and identically distributed (iid) and
follow a normal distribution with mean zero:

ε
iid∼ N(0, σ2) (2)

Setting aside the issue of how and why this normality assumption makes sense for now,
let’s first examine what this conventional specification of the error term implies. First,
the zero-mean assumption means that given the x value, we want the data points to
be distributed around the linear line symmetrically. That is, we do not want the linear
line to be biased to either its left or right side. Second, we want the scale parameter σ
to represent the degree of dispersion of data points away from the linear line. The larger
σ is, the larger the dispersion. Figure 4 visualizes these two properties of the normality assumption.

Before we move to the estimation of this simple linear model, let us briefly discuss some
justifications/falsifications for the normality assumption. The normal distribution is summarized
by the first and the second moments of the random variable (mean and the variance). Therefore,
if researchers want to avoid the computational burdens of taking into account higher sample
moments in their analysis and want to approximate the data by using the first two moments, the
normal distribution is the natural choice.1 Second, the normal distribution is a meta distribution
of the aggregate sum (or the average) of the random variables. That is, when we draw n random

1It can be mathematically shown that the normal distribution is the most likely distribution or the maximum
entropy distribution when the random variable is constrained by the first two moments in the real line.
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Figure 4: Linear relation between x an y with normal error term.

numbers from any distributions and take the average of them, and we repeat this many times,
these averages will converge to a normal distribution. The more numbers we draw (n ↑), the more
it looks like a Normal. Therefore, if the researchers are interested in the variable that presumably
comes from the aggregation of underlying components, such as a firm’s productivity as an average
of productivities of its employees, the Normal assumption can be justified.

The key drawback of a normal distribution is that it has a thin tail, meaning that it cannot
capture observations that are far away from the mean. To get some intuition, suppose we have
some observations of stock returns (fake data) clustered around the mean so that we want to use a
normal distribution to describe it, which is shown in Figure 5. We have two normal distributions.
The first normal distribution in black is fitted only using values between -15% and 15% while the
second one in red uses all the data points.

It is clear from the figure that the first normal explains the data around the mean quite well but
has practically zero probability for stock market return below -15% and above 15%. The second
normal seems to encompass the extreme values with a higher scale parameter but poorly predicts
the data points around the mean. This exercise suggests that the normal distribution is not a good
model when the data includes many extreme values. In many real life data, we observe considerable
extreme values (black swans). For example, stock prices tend to be extremely volatile historically
so that its time series is punctuated by a series of dramatic booms and busts. That is, -15% or 15%
market returns (at least for individual stocks) are quite common. When we have extreme values in
the data, researchers use heavy-tail distributions to account for extreme values far away from the
mean, such as Student-t distribution and Cauchy distribution.2

2See Taleb (2007) for a comprehensive discussion on extreme values and fat-tail distributions
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Figure 5: Distribution of stock returns with two different normal fits with and without extreme values.

3 Estimation and inference methods

Now that we have discussed the basic concepts and model specification of a linear regression model,
let us turn our attention to how to estimate this model from various methodological points of view.

3.1 Ordinary Least Squares and classical inference

OLS estimation
One of the most standard estimation methods for linear regression is the Ordinary Least

Squares (OLS) estimation. Loosely speaking, it is based on a very simple and intuitive idea that
we want our prediction of data points as close to actual data points as possible. In other words,
the OLS estimation gives the estimator of a linear line that minimizes the distance between
predicted values and actual observations. Let’s unpack what this means by working out some
equations.

Formally, the OLS estimation minimizes the sum of the squares of the differences between the
observed dependent variable and its predicted values, often called residuals. Let α̂ and β̂ denote
the estimator of α and β. Then, the predicted values of the dependent variable on the linear line,
which we denote by ŷ, is

ŷ = α̂+ β̂x (3)

What we want is to find α̂ and β̂ such that

n∑

i

(yi − ŷi)
2 =

n∑

i

(yi − α̂− β̂xi)
2 (4)

is the minimum. To find α̂ and β̂, we need to solve the following optimization problem:3

argmin
α,β

n∑

i

(yi − α− βxi)
2 (5)

3Note that arg min f(x) represents the value of x at which the maximum of f(x) is attained.
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The solution to this optimization problem is

α̂ = ȳ − β̂x̄ (6)

β̂ =

∑n
i (xi − x̄)(yi − ȳ)∑n

i (xi − x̄)2
=

Cov(x, y)

Var(x)
(7)

where x̄ and ȳ are the sample means of x and y. The proof of this result will be shown in Topic 5
in a more general framework. This result shows that the OLS estimators for α and β are functions
of the sample means, variances, and covariances of x and y.4

Classical inference
From here, the goal of the classical statistics is to find the correct sampling distribution of these

estimators to construct a confidence interval (See Topic 3). Using some elementary algebra, it can
be shown that the sampling distributions for α̂ and β̂ are the following:

α̂ ∼ N

(
α,

σ2

n
+

σ2x̄2∑n
i (xi − x̄)2

)
(8)

β̂ ∼ N

(
β,

σ2

∑n
i (xi − x̄)2

)
(9)

This result shows that the sampling distribution of the OLS estimator is a normal distribution.
However, this only holds when we know σ and do not have to estimate it along with α̂ and β̂.
When σ is unknown, we need to estimate it as well, which results in a different form of the sampling
distributions for α̂ and β̂. The unbiased estimator for σ for a simple linear regression with one
intercept and one slope is

σ̂ =

√√√√ 1

n− 2

n∑

i

(yi − ŷ)2 (10)

In other words, we use the sum of the squares of the residuals corrected by two degrees of freedom
for our estimator for σ. The correction of n − 2 is necessary in order to correct for a downward
estimation of σ when using residuals.5

With unknown σ that needs to be estimated using a finite sample, there is more uncertainty in
the sample distributions of α̂ and β̂. As we discussed in Topic 3, it turns out that when the sample
size is not large enough, a Student-t distribution is the correct sampling distribution for α̂ and β̂
as follows

α̂ ∼ tn−2

(
α,

σ̂2

n
+

σ̂2x̄2∑n
i (xi − x̄)2

)
(11)

β̂ ∼ tn−2

(
β,

σ̂2

∑n
i (xi − x̄)2

)
(12)

4These estimators are often called the best linear unbiased estimator (BLUE), meaning that they have the lowest
sampling variance among unbiased estimators, which can be shown by the Gauss–Markov theorem.

5This is a subtle point that requires some elaboration. When estimating the standard deviation of the normally
distributed data with an unknown mean, we use a sample standard deviation corrected by n−1, which is often called
Bassel’s correction. The intuition behind this correction is that the sample standard deviation, which represents the
deviation of observations from their mean (the sample mean), underestimates the true standard deviation since it
doesn’t account for the potential deviation of the sample mean from the true mean. To correct for this source of bias
from one unknown variable that leads to a downward estimation of the standard deviation, we need n− 1 correction
when using the sample standard deviation. The same logic goes for the linear regression exercise. Here, the mean (of
the normal distribution) consists of two variables, the intercept and the slope coefficients, meaning that we have two
sources of bias. To correct for this, we need n−2 correction, when using the sample residuals for the estimation of σ.
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Using these sampling distributions, one can easily construct the confidence interval for α and β.

Example
Let’s now look at an example to see how to implement the classical method of simple linear

regression. The data we use are from Figure 3. We have 100 observations of x and y variables as
shown in Table 1.

Table 1: Example Data of x and y

Obs. x y

1 -1.81 -0.93
2 -1.68 -0.80
3 -1.62 1.26
...

...
...

99 2.46 7.44
100 2.65 9.79

Using Eqs 7 and 10, we can calculate the estimators for α, β, and σ as follows.

α̂ = 1.88

β̂ = 1.68

σ̂ = 1.79

Since we have 100 observations, it is safe to use a normal distribution as a sampling distribution
to construct the confidence interval. Using Equation 13, we have

α̂ ∼ N
(
α, 0.132

)

β̂ ∼ N
(
β, 0.152

)

Using the sampling distributions, we can construct confidence intervals. Figure 6 visualizes the
regression result with a fitted regression line and confidence intervals of different α-levels.

3.2 Maximum likelihood estimation

The MLE is a statistical procedure that finds the point estimate of parameters by maximizing a
likelihood function associated with them (See Topic 3). Then, what is the likelihood function for
the simple linear regression? Assuming that the errors follow a normal distribution with zero mean,
we can rewrite the simple linear regression as follows

y ∼ N(α+ βx, σ2) (13)

This is another way of saying that the dependent variable y is normally distributed with standard
deviation σ along the regression line defined by α + βx on the x − y plane. Remember that the
likelihood function is the probability of data given the hypotheses P (y|θ). Therefore, the likelihood
function for the simple linear regression, L̂n(α, β, σ |y) can be written as follows

L̂n(α, β, σ |y) =
n∏

i

P (yi|xi, α, β, σ)

=
n∏

i

1√
2πσ2

exp

(
−(yi − α− βxi)

2

2σ2

)
(14)
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Figure 6: OLS regression line with confidence intervals.

The log-likelihood function for the linear regression is written as follows

l̂n(α, β, σ |y) = log
n∏

i

P (yi|xi, α, β, σ) = −n

2
log(2π)− n logσ− 1

2σ2

n∑

i

(yi − α− βxi)
2 (15)

Therefore, the MLE for the simple linear regression boils down to solving the following opti-
mization problem

α̂, β̂, σ̂ = arg max
α,β,σ

l̂n(α, β, σ |y) (16)

where l̂n represents a log-likelihood function. The solution for each of the parameters is

α̂ = ȳ − β̂x̄ (17)

β̂ =

∑n
i (xi − x̄)(yi − ȳ)∑n

i (xi − x̄)2
=

Cov(x, y)

Var(x)
(18)

σ̂ =

√√√√ 1

n

n∑

i

(yi − ŷ)2 (19)

The result shows that the MLE estimators for α̂ and β̂ are exactly the same as the OLS
estimators. In contrast, the MLE estimator for σ doesn’t include n − 2 correction and is biased.
However, this estimator is consistent, meaning that as the sample size increases, it converges to
the true σ.
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How about the sampling distribution for the MLE estimators? As expected, the sampling
distributions for α̂ and β̂ are exactly the same as the OLS sampling distributions as follows

α̂ ∼ N

(
α,

σ2

n
+

σ2x̄2∑n
i (xi − x̄)2

)
(20)

β̂ ∼ N

(
β,

σ2

∑n
i (xi − x̄)2

)
(21)

Even though we are not showing here formally, it is worthwhile to note that the MLE method
allows us to construct the sampling distribution of σ2 as well.

We are skipping the example of the MLE for a simple regression since the results will be the
same as those from the above. MLE implementation will be discussed in great detail in the next
topics.

3.3 Bayesian methods

The Bayesian treatment of the simple regression analysis is very similar to that of the MLE
since they both share the same likelihood function. As we discussed in Topic 3, in the Bayesian
framework, i) there is a prior distribution for the regression parameters, P (θ) = P (α, β, σ), and ii)
the estimation result comes in the form of a probability distribution (the posterior distribution).

There are multiple ways of approaching the simple linear regression analysis from the
Bayesian perspective depending on what types of priors we want to use. In fact, when we use
uninformative priors, the Bayesian method is equivalent to the MLE, and therefore the MLE
estimators (and consequently, OLS estimators) are the same as the posterior mean of α and β.6

As we discussed in Topic 3, Bayesian statisticians often use a conjugate prior, a particular type
of prior distribution that makes the posterior distribution yield the same functional form as the
prior. It can be shown that the conjugate prior on the coefficients in the linear regression with
the normally distributed errors is a normal distribution. That is, if we use a Normal prior on α
and β, the posterior distribution of α and β itself will be a normal distribution. The use of a
conjugate prior is mathematically elegant but only works for relatively simple models such as
the simple linear regression in our exercise. For more complex problems, it is often not easy to
find conjugate priors due to mathematical difficulty. Therefore, to highlight the flexibility of the
Bayesian method, we will not limit our discussion to the conjugate priors and show that Bayesian
statistical inference can be done without worrying about the mathematical difficulty of solving
the posterior distributions.

Example
To give an intuition of how to set up a Bayesian model for a simple linear regression, let’s

repeat the example we used above using the Bayesian method. Remember that the goal of the
Bayesian estimation is to get the posterior distribution, which is essentially the probability of
all possible values of the coefficient given data, P (θ|y). According to Bayes’ theorem, we need
three probabilities to get the posterior, namely, P (θ), P (y|θ), and P (y). Ignoring the normalizing
constant, P (y), P (θ|y) is proportional to the product of P (θ)P (y|θ). Therefore, in our linear

6With a bit of math, it can be shown that the posterior distribution of σ2 follows an inverse χ2 distribution with
n− 2 degree of freedom.
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example exercise, we can write the posterior as follows

P (α, β, σ|y, x) ∝ P (α, β, σ)P (y|x, α, β, σ) (22)

where P (α, β, σ) is a joint prior distribution on α, β, and σ while P (y|x, α, β, σ) is a likelihood
function.78 As we discussed above, the likelihood function for a simple linear regression can be
expressed as y ∼ N(α+βx, σ2). Then, Bayesian priors distributions are applied to three unknowns,
α, β, and σ.

y ∼ Normal(α+ βx, σ2) (23)

α ∼ to be determined (24)

β ∼ to be determined (25)

σ ∼ to be determined (26)

Depending on what priors we use, the posterior distribution will be determined. Let’s start with
non-informative priors on all three coefficients. Suppose α and β can take all values in the real
line, then a prior distribution shouldn’t be bounded. This is not the case for σ because the
standard deviation is always positive. For this reason, a prior distribution on σ needs to have only
positive support. For this exercise, we will use a normal distribution as a prior on α and β and an
exponential distribution as a prior σ. To make this prior distribution uninformative, we need to
assign an almost equal probability to each of all possible values of the coefficients and therefore,
make the distribution as dispersed as possible.9 For a normal distribution, this can be done by
setting the scale parameter to be high. For an Exponential distribution, the rate parameter needs
to be small. (See Topic 1 for discussion on the normal and exponential distribution.)

Let’s set the standard deviation of a normal distribution to be 10 and the rate of the Exponential
to be 0.1 as follows.

y ∼ (α+ βx, σ2) (27)

α ∼ N(0, 10) (28)

β ∼ N(0, 10) (29)

σ ∼ Exponential(0.1) (30)

Then, our prior distributions are visualized in Figure 7.

Since the prior distribution covers a wide range of values, it correctly reflects our prior
ignorance. We can check this by simulating data for y given these priors, which is called prior
predictive check. Figure 8 shows prior predictive lines over the original data generated from the

7Assuming independence of prior distributions, P (α, β, σ) = P (α)P (β)P (σ).
8Note that our simple regression analysis assumes the independent variable x to be known (or non-random). A

full probabilistic model for the linear regression involves a joint likelihood P (x, y|θ). This means that the distribution
of x, which we assume to depend on some arbitrary set of parameters phi, can feed into the likelihood function of the
linear regression. However, under a weak assumption that P (x|ϕ) and P (y|x, θ) are independent, it can be shown
that we can ignore the distribution of x and can work directly with P (y|x, θ).

9If we want to assign the exactly equal probability to all possible values, we can use a uniform distribution as a
prior. However, when the potential values of coefficients are not bounded, the uniform distribution is an improper
prior in the sense that the distribution does not integrate to one. When the prior is improper, it is sometimes hard
to find a valid posterior distribution.
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Figure 7: Normal and exponential priors with a wide support.

normal prior distributions of α and β. It clearly shows that the prior predictive lines are scattered
all over the space with substantially larger ranges than the original data, implying that our prior
distributions are not informative.
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Figure 8: Prior predictive lines generated from the normal prior distribution of α and β.

As expected, the linear lines cover almost all spaces in the x− y plane, meaning that our prior
distributions are indeed uninformative.

Now, how can we get the posterior distribution given these priors and the likelihood function?
We can work out the math and derive a functional form of the posterior distribution. Again,
this is only possible for a simple problem. For more complex problems, it might be extremely
hard to derive a posterior distribution analytically. Therefore, Bayesian data analysis always
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goes along with simulation methods.10 The most well-established simulation algorithm that is
used to approximate the posterior distribution is Markov Chain Monte Carlo (MCMC). With
this simulation method, the posterior distribution for our simple linear regression model can be
approximated. Table 2 shows the mean, standard deviation, and the 5%, 50% (median), and 95%
quantile of the posterior distributions along with the convergence diagnostics, R̂.11

Par Mean SD 5% 50% 95% R̂

α 1.88 0.19 1.57 1.88 2.17 1.00
β 1.67 0.20 1.34 1.68 2.01 1.00
σ 1.81 0.13 1.61 1.81 2.04 1.00

Table 2: Summary statistics of the posterior distributions.

Figure 9 compares the posterior and prior distributions of α, β, and σ.
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Figure 9: Posterior distributions of α, β, and σ with corresponding prior distributions.

Note that the estimation result for all coefficients, α, β, and σ, comes in the form of a probability
distribution, making it easy and intuitive to express our uncertainty of the estimation.

4 Post-estimation evaluation

4.1 Residual analysis

Now that we have discussed the estimation of a simple linear regression model, we need to validate
how good our estimation result is. In the examples above, we visually checked the regression fit
just by looking at whether the regression line passes through the data points. This is a good
starting point, but there are some other aspects of estimation results we need to examine.

One of the key assumptions behind our simple linear regression is that errors are iid and are
normally distributed with mean zero and a constant standard deviation. We need to verify if this
assumption is valid. To do this, we can use residuals, which can be considered estimates of the
errors, and see if they follow the normality assumption. Since we know both y and ŷ, we can

10We can use a grid approximation or Laplace approximation to find the posterior but these methods are not
tractable with a model with a large number of parameters.

11When R̂ is smaller than 1.1, it is safe to say that the MCMC chains are properly mixed
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calculate the residuals by calculating their differences e = y − ŷ. With this, we can check whether
residuals have i) mean zero, ii) constant variance and iii) no correlation (from the iid assumption).

Figure 10 visualizes three regression results with different residual patterns. The first column
shows the fitted regression line ŷ over the data x with the residual line (a vertical line between
the observation and the fitted line). The second column shows the distribution of the residuals,
while the third column shows the regression residuals versus the fitted line, which is often called a
residual plot.
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ŷ

ε

−1 0 1 2

−4

−2

0

2

4

6

8

10

x

y

−6 −4 −2 0 2 4 6

0.00

0.05

0.10

0.15

0.20

0.25

ε

de
ns

ity

0 2 4 6

−4

−2

0

2

4

ŷ
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Figure 10: Three regression examples

The top row is a bad example of a simple linear regression since the observed data points are
not centered around the estimated regression line. The regression line systematically overestimates
y when x is very small or very large while it underestimates y when x is in the mid-range. This
results in a correlation in the neighboring residuals, violating the independence assumption, as
can be shown in the residual plot.
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The second row shows another bad example. Even though the data points do seem to be
centered around the regression line, there is inconsistency in how much the data points deviate
from the regression line. As x increases, there is more deviation, implying that the assumption of
a constant standard deviation (the assumption of identical distribution) is violated . This can be
clearly seen in the residual plot that shows the increasing magnitude of residuals as x increases.

The last one shows a good example. The regression line passes through all the data points
evenly so that the observed data points are centered around the estimated regression line with no
changes in the degree of deviation. The residual plot exhibits consistently and evenly distributed
residuals.

4.2 Goodness of fit

The residual plot shows whether the estimation result is consistent with the normality assumption
of errors. However, it does not directly tell us much about the fit of the model itself, e.g. how
well the model explains the observed data. There is a wide range of techniques that attempt to
quantify how the observed data are different from the predicted values. These techniques are
broadly called goodness of fit test or more broadly model validation. In this section, we will dis-
cuss a standard measure for goodness of fit in linear regression, namely, coefficient of determination.

Coefficient of determination
The coefficient of determination, better known as R2, is defined as the proportion of the

variance of data explained by the model. In other words, R2 compares the degree of variability
of y (put it differently, the prediction error of y) with and without the regression model in a
particular manner.

There are different measures of variability, e.g. the sum of squares, absolute deviation, in-
terquantile range, and R2 uses the sum of squares as a measure of variability. The degree of
variation in y before we use the model is just the sum of squares of y compared to its mean ȳ,
which is the (unnormalized) variance of y. We call this measure the total sum of squares

SStot =
n∑

i

(yi − ȳ)2 (31)

In contrast, the degree of variation in y with the model is the sum of squares of y compared to its
predicted value ŷ, which is the (unnormalized) variance of residuals. We call this the residual sum
of squares.

SSres =

n∑

i

(yi − ŷi)
2 (32)

Then, R2 is defined as

R2 =
SStot − SSres

SStot
= 1− SSres

SStot
(33)

This is the proportion of the variance of y explained by the model. Alternatively, this is the fraction
of the variation in y explained by x.12 Two extreme cases are R2 = 0 and R2 = 1. When R2 = 0,

12We can show that
∑n

i (yi − ȳ)−∑n
i (yi − ŷi) =

∑n
i (ŷi − ȳ), which we call explained sum of squares and denote

SSreg. SSreg is the sum of square of the predicted value of y compared to the data mean, and can be interpreted as
the (unnormalized) variance of the predicted value of y since OLS yields ŷ = E(y)
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this means that zero percent of the variance in y is explained by the explanatory variables. When
R2 = 1, 100% percent of the variance in y is explained by x, meaning the perfect fit. Normally, R2

is calculated between 0 and 1. Figure 11 visualizes how to calculate R2 with 4 data points.
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Figure 11: Visualization of R2.
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Figure 12: Regression results with R2.

Figure 12 shows 4 different regression results with the corresponding R2. The linear regression
in the first panel has the best fit with R2 = 1. R2 gets smaller as the data become noisier. It is
worthwhile to note that even though R2 gives some information about the model fit, it cannot be
used as a model comparison tool when comparing regression models with a different number of
independent variables. This is because R2 is an increasing function of the number of parameters,
and therefore, adding more independent variables automatically increases R2. We will come back
to this point in Topic 6 where we discuss a multivariate regression model and adjusted R2.13

13There is a Bayesian version of R2. An advantage of using a Bayesian R2 is that we can construct the probability
distribution of R2, providing useful information about the uncertainty of the model fit. See Gelman et al. (2019) for
a detailed discussion on how to construct R2 from the Bayesian perspective.
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1 Issues with a simple linear model

In Topic 4, we discussed a simple linear regression, a linear relation between one outcome
variable and one predictor. We now turn our attention to a slightly more complex model,
namely a multiple linear regression model. It is “multiple” because we use more than one predictor.

One might wonder why we have to use a multiple linear model instead of running multiple
simple linear models since both will tell us how multiple predictors are correlated with an outcome
variable. This intuition turns out to be misplaced. This section deals with some justifications of
multiple linear regression models.

1.1 Simpson’s paradox

Simpson’s paradox is a statistical phenomenon where including another predictor reverses or
nullifies the association between existing predictors and the outcome variable. That is, the
coefficients of some predictors can be reversed or become zero when adding additional predictors.
Let’s take a couple of examples and discuss its implication with regard to the justification for a
multiple regression model.

Amateur vs. professional climber
Suppose we have two rock climbers, A and B and there are two practice routes graded V4 and

V8. V4 is not easy but one can do it with a bit of exercise, whereas V8 is quite hard and even
professionals climbers sometimes fail. Both climbers have tried these two practice routes multiple
times and recorded the success rates. They first recorded the overall success rate (# of success
over # of trials) as is shown in the following table.

Climber A Climber B

Success rate 32% (19/60) 39% (120/305)

Climber B appears to have a higher overall success rate. Does this mean that Climber B
performs better than Climber A? According to the overall success rate, the answer is yes. Now,
let’s look at the success rate by each route.

Climber A Climber B

V4 success 90% (9/10) 40% (120/300)
V8 success 20% (10/50) 0% (0/5)

Overall success 32% (19/60) 39% (120/305)

When looking at each of the practice routes, the success rates are reversed and Climber A
outperforms B both in V4 and V8. That is, “conditionally on” each grade, Climber A has always
higher success rates. So, what’s happening? Climber A did have a lower overall success rate, but
this happened because Climber A tried more V8 than V4 while Climber B tried substantially
more V4 than V8.

College admission
The same logic can be applied to a real-life example of alleged discrimination in graduate school

admission at UC Berkeley. The admission data for 1973 at UC Berkeley shows that male applicants
had a higher chance to get admitted as shown in the table below
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Males Females

Admission rate 44% (3738/8442) 35% (1494/4321)

According to this overall admission rate, one might conclude that relatively more males were
admitted than females and there might have been some discrimination against female applicants.
But again, if we look at individual departments, female candidates had a higher admission rate
in a greater number of departments. Similar to the professional climber in the example above,
females applications did have a lower admission rate, but this happened because females applied
to the harder departments to get in.

Department Men Women

A 62% (512/825) 82% (89/108)
B 63% (313/560) 68% (17/25)
C 37% (120/325) 34% (202/593)
D 33% (138/417) 35% (131/375)
E 28% (53/191) 24% (94/393)
F 6% (22/373) 7% (24/341)

Overall rate 44% (3738/8442) 35% (1494/4321)

These exercises illustrate the importance of thinking “conditionally” by showing that the
overall pattern of data can be reversed when looking at different groups separately (that
is, conditional on groups). And this is why we need to use a multiple regression model
when we have more than one predictor at play. Suppose we set up a model that predicts
the success rates in our climbing example. Two predictors we have are i) Climbers A and
B and ii) route grades. If we run two simple regressions on i) and ii) separately, we will
end up with two unconditional results that B performs better than A from i) and Grade
V8 has a lower success rate than V4 from ii), the former of which is misleading as we
discussed above. A multiple regression model avoids this issue because it includes both pre-
dictors in the same regression and the effect of each predictor is estimated conditional on the others.

Technically, the group variable in the Simpson’s paradox can be understood as an example of a
confounder, a variable that messes up with a causal link between other variables, if omitted. And,
there are many interesting examples of confounders in statistical analysis. We will discuss this
point in more detail in Topic 7 since it plays a very important role in statistical causal inference.

1.2 Hidden causation

Hidden causation is a statistical phenomenon where the influence of a predictor on the outcome is
felt through another predictor. For example, suppose there is some positive relationship in data
between a mother’s age at the time she gives birth and a child’s test score at age of 3. Does
this mean that we should recommend that parents try to have a baby as late as possible? Well,
there are several mechanisms by which a mother’s age affects a child’s test score. For example, a
mother’s age at her childbirth could be related to her educational level, and what matters to her
child’s test score might not be her age but her educational level. Or, it might be the case that
older mothers who gave birth to a child at a later age in the data might already have another kid
so that they know how to raise a kid better. In all these cases, there are hidden links of causality
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behind the impact of a mother’s age on her child’s test score.

A multiple regression model can help us find out this hidden causation. In a mother’s age
vs. child test score case, we can first try a simple regression model only with a mother’s age as a
predictor and check the coefficient. Then, we repeat this regression that further includes a mother’s
education level at the time of birth and check if the coefficient of the predictor for a mother’s age
has changed. If it has significantly decreased while the coefficient of a mother’s education level
is positive, this indicates the possibility that there is a hidden causal link behind the impact of a
mother’s age on her child’s test score.

1.3 Interaction

Another good reason for using a multiple regression model is the potential interactions between
predictors. This is the case when two or more predictors have a non-additive effect on the out-
come variable such as a synergy effect. For example, it is often argued in cancer studies that
chemotherapy and radiation therapy are interacting variables in cancer treatment. That is, the
effectiveness of chemotherapy increases when treated with radiation therapy and vice versa. In
this case, the standalone simple linear regression either overstate or understate the effectiveness of
each chemotherapy and radiation therapy without capturing the synergy effect of two. A multiple
regression model with an additional interacting term can address this deficiency of a simple linear
regression as will be shown below.

2 Basic framework

Multiple linear regression is a statistical technique that uses more than one predictor to predict the
outcome variable. Assume that we have a sample of n observations on outcome variable y and k−1
explanatory variables, x1, . . . , xk−1. We choose k − 1 to make the total k number of coefficients
including the intercept. Then, a multiple regression model is written as follows1

y = β0 + β1x1 + β2x2 + · · ·+ βk−1xk−1 + ε

= β0 +
k−1∑

j

βjxj + ε (1)

This is an extension of a simple linear regression model by adding more predictors on the right-hand
side. The only notational difference is that we use β0 instead of α for the intercept.2 As before,
we keep the same error structure by assuming that errors are iid and are normally distributed with

mean zero and a constant variance ε
iid∼ N(0, σ2).

Not surprisingly, the OLS, MLE, and Bayesian estimators (with uninformative priors) for
the intercept and slope coefficients can be derived exactly the same way as we did in the simple
regression case. Since the estimators of coefficients derived from these three different methods are
the same, we will illustrate the multiple linear regression using the OLS framework and focus more
on the interpretation of the coefficients and the actual examples of the multiple linear regression
in Section 3.

1xj , y, and ε are all n× 1 vectors.
2This is because we want to use a matrix notation for the OLS derivation, and denoting the intercept by β0 makes

it notationally convenient to collect all the coefficients in β vector.
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As before, the OLS estimators for β0, β1, . . . , βk can be derived by solving the following opti-
mization problem:

argmin
β

n∑

i

(yi − β0 −
k−1∑

j

βjxij)
2 (2)

The solution to this optimization problem is extremely messy in non-matrix form. For example, β̂1
for the two explanatory variable case, which is the simplest multiple regression, is the following:

β̂1 =
(
∑n

i x
2
i2)(
∑n

i xi1yi)− (
∑n

i xi1x2i)(
∑n

i xi2yi)

(
∑n

i x
2
i1)(
∑n

i x
2
i2)− (

∑n
i xi1xi2)

2

This shows that the estimation of each of the coefficients requires product and cross summation
of all variables so the notation will become unwieldy when we add more explanatory variables.
Therefore, it is standard to use a matrix notation for multiple regression analysis.

Using a matrix form, we can write multiple regression as

y = Xβ + ε, (3)

where

y =




y1
y2
...
yn


, X =




1 x11 · · · x1k−1

1 x21 · · · x2k−1
...

...
. . .

...
1 xn1 · · · xnk−1


, β =




β
β1
β2
...

βk−1



, ε =




ε1
ε2
...
εn


.

y is a n × 1 vector, X is a n × k matrix, β is a k × 1 vector, and ε is a n × 1 vector. The OLS
estimator for β̂ can be derived by solving the following optimization problem:3

argmin
β

(y −Xβ)′(y −Xβ) (4)

whose solution is

β̂ = (X′X)−1X′ y (5)

The expected value and the variance of the estimator in a matrix form are

E(β̂|X) = β (6)

Var(β̂|X) = σ2(X′X)−1 (7)

Same as the simple regression, it can be shown that the sampling distribution for β is a multi-
variate normal distribution with the mean and variance from Eqs. 6 and 7.

β̂ ∼ N
(
β, σ2(X′X)−1

)
(8)

3See Appendix for proof.
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When σ2 is unknown, its estimator is4

σ̂2 =
(y −X β̂)′(y −X β̂)

n− k
=

1

n− k

n∑

i

(yi − ŷi)
2 (9)

As we discussed in Topic 4, when σ is unknown with small sample size, the student-t distribution
is a correct sampling distribution for β̂

β̂ ∼ tn−k

(
β, σ2(X′X)−1

)
. (10)

3 Examples and interpretations of multiple regression model

Now that we set up a basic estimation framework for multiple regression, we will turn our attention
to examples and interpretations of the multiple regression model.

3.1 Multiple predictors with no interactions

Changes of intercepts
Suppose we have two predictors with no interactions (two predictors which do not interact in

their influence on y) with the following specification

y = β0 + β1x1 + β2x2 + ε (11)

Here, we have two predictors x1 and x2 with a normal error term ε with zero mean. To get some
intuition about multiple regression models, let us first assume that x1 is a continuous variable and
x2 is a discrete variable taking the value of 0 or 1. We can think of x2 as a group variable (group
0 and 1). Table 1 shows how the data is structured.

Table 1: Sample data

Obs. y x1 x2(group)
1 -2.50 -1.20 0
2 0.53 1.89 1
3 4.34 0.11 0
4 -0.76 -0.15 1
...

...
...

198 -4.11 -0.29 1
199 0.59 -0.89 0
200 7.14 2.65 0

Figure 1 visualizes the data in two different ways. The left panel shows x1 versus y with a
regression line from a simple linear regression of y on x1 (without x2). The right panel shows the
same relationship conditional on the group variable x2. A simple regression line is added for each
group, that is, the regression line obtain from individual estimation of y over x1 for each group. It
is clear from the figure that the slope of the regression line without the group variable x2 (black)
is quite similar to that of the regression lines for each group (blue and red). However, the simple
linear regression without group predictors (left) fails to capture the crucial pattern that the

4See Topic 4 for an intuitive explanation of why we need n− k correction for σ2. A formal proof can be found in
the Appendix.
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Figure 1: x vs. y, pooled & group-level

observations in group 1 systematically have smaller y values than those in group 0. As shown in
the blue and red regression lines, the intercept of the group 1 line is significantly lower than that
of group 0.

To understand how multiple regression models can capture the difference in intercepts across
groups, let’s now look at Table 2 which compares two regression results with and without the
group predictor x2. The value in the parenthesis is one standard deviation of the sampling
distribution for each coefficient. In the simple regression without the group variable x2, the
slope coefficient of x1 (β1) and the intercept (β0) are 0.795 and 0.062, respectively. The
interpretation is straightforward: β0 is the y-intercept on a x − y plane (the value of y is 0.062
when x1 = 0) while β1 is the marginal impact of x1 on y (0.792 increase of y when x increases by 1).

Table 2: Regression regression with and without x2

Outcome variable:

y

Model without x2 Model with x2

β1 0.795 0.808
(0.192) (0.138)

β2 -3.615
(0.263)

β0 0.062 1.869
(0.184) (0.187)

# of Obs. 200 200
R2 0.080 0.530

In the multiple regression, the coefficients of x1 and x2 (β1 and β2), and the intercept β0 are,
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0.808, -3.615, and 1.869, respectively:

y = 1.869 + 0.808x1 − 3.615x2 + ε

The interpretation of these coefficients is not as straightforward as the simple regression case. First,
the intercept β0 is the value of y when both x1 and x2 are zero. In our example, it coincides with the
y intercept for Group 0 (both x1 = 0 and x2 = 0), that is, the intercept of the blue line in Figure 1.5

Second, the coefficient of x1 (β1) is the partial effect of x1 on y, meaning that it captures the
relationship between y and x1 when x2 is fixed (that is, no matter what the values of x2 are).
More intuitively, we can think of the value of β1 = 0.808, as the best approximation to the slope
of a regression line that works for both of our two different groups. It doesn’t work as perfectly
as the individual regression lines in the right panel of Figure 1 in predicting the slope for each
specific group but is the best approximation when two groups are considered simultaneously.

Finally, β2 is the partial effect of x2 on y (given x1 constant). In our exercise, it reflects the
difference in y value between Group 0 and 1: the y values in group 0 smaller than those in Group
0 by 3.615. We can think of this as a change in the intercept of the two separate regression lines
in the right panel of Figure 1. From Equation 12, we see that, for Group 0, the intercept is
β0 = 1.869 (when x1 = 0 and x2 = 0) and for Group 1, the intercept is β0 − 3.615 = −1.746 (when
x1 = 0 and x2 = 1).

Simpson’s paradox
Let’s repeat the same multiple linear specifications of Equation 11 with data. In this example,

x1 is a discrete variable indicating 0 = Male and 1 = Female and x2 is a group variable with 0, 1,
indicating two different departments.6 Figure 2 visualizes data with regression lines. Contrary to
Figure 1, the sign of the slope of the simple regression line (left plot) reverses when we look at
the regression line of each of the individual groups (right plot). While x1 and y have a positive
relationship in either of two groups, it becomes negative when we ignore groups.

As we discussed in Section 1, this seemingly puzzling phenomenon is called Simpson’s paradox
where including an additional predictor reverses or nullifies the association between existing
predictors and the outcome variable. In the context of college admission, the main predictor
x1 is the gender indicator and the group predictor x2 is the department indicator. y is the
admission score. When looking at the overall relationship between gender and the admission
score from simple linear regression, there is a negative relationship, meaning that female
applicants tend to have a lower score compared to their male counterparts. This relationship
is misleading: when we look at the same relationship for each department (Group 0 and
1), the relationship is reversed and now the female candidates tend to have higher admission scores.

A multiple regression model can address this deficiency of the simple linear regression
model. Table 3 compares two regression results with and without the group predictor
x2. As expected, the slope coefficient in the model without x2 is negative (-8.281). In
contrast, the model with an additional group predictor estimated the partial effect of gender

5If predictors cannot be zero, the intercept has no intrinsic meaning.
6It is worthwhile to note that ANOVA and OLS with categorical predictors are mathematically identical even

though the model output takes a different form. This course does not directly discuss ANOVA modeling and replace
it with detailed discussions on multiple and multilevel regression modeling.
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Figure 2: Multiple regression example: Simpson’s paradox

on admission scores, β1 to be positive with a significant magnitude, 20.992. β2 is the
difference in the average admission score between two departments, reflecting the changes
in the intercept in blue and red regression lines in Figure 2. Group 0 has higher admission
scores than Group 1 by 32.525. Finally, β0 is the admission score for Group 0 (x2 = 0) when x1 = 0.

Table 3: Regression result for Simpson’s paradox example

Outcome variable:

y

Model without x2 Model with x2

β1 -8.281 20.992
(2.645) (5.625)

β2 -32.525
(5.625)

β0 58.938 60.564
(1.870) (1.756)

Observations 200 200
R2 0.047 0.185

The reason behind the change in the sign of the impact of gender on admission score is
because substantially more female candidates applied to the department where the admission
score tends to be lower. Therefore, even though female candidates outperform male candidates in
both departments, the higher presence of female candidates in a tough department makes their
performance look bad when we look at the overall score.

Hidden causation
As a final example of a multiple regression model without interaction, Let’s visit the mother’s

age vs. child test score case we briefly discussed in Section 1 with actual data from Gelman & Hill
(2006). The dataset has three columns as shown in Table 4: Child’s test score at age 3, Mother’s
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educational level, and Mother’s age.

Table 4: Data on child test score from Gelman & Hill (2006).

Obs. Child’s Score Mother’s Educ. Level Mother’s Age

1 120 2 21
2 89 1 17
3 78 2 19
4 42 1 20
...

...
...

399 98 1 18
400 81 2 22
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Figure 3: Child’s test score vs. Mother’s age and Mother’s educational level.

First, we are interested in the impact of a mother’s age on a child’s test score at age 3. The
left plane in Figure 3 visualizes the regression result, showing that the older a mother is, the
higher her child’s score with the slope of 0.84. Should we then recommend that mothers give birth
as late as possible? Let’s be more careful and use an additional piece of information from the data
set, namely, a mother’s educational level (1-3 scales). The right panel visualizes the regression
result and also shows that there is a positive relationship between a mother’s educational level and
a child’s test score. Then what variable should we trust more in predicting a child’s test score?

As we discussed in Section 1, comparing simple and multiple regression models can help us to
find out how which predictor plays the key role or not by tracking the changes in the magnitude
of the coefficients. Table 5 compares three regression results: a model only with x1, a model only
with x2, and a model both with x1 and x2.

As the result shows, the impact of a mother’s age reduces dramatically from 0.840 to 0.343
when we run a multiple regression model with an additional predictor of a mother’s education
level. The standard error of this coefficient in the multiple regression is so high (0.398) that we
cannot be sure if the true impact is above zero. In contrast, the impact of a mother’s education
level changes very little and has a similar value both in the simple and multiple regression models.

10



Table 5: Multiple regression for Child test score example

Outcome variable:

Child’s test score

Model with x1 Model with x2 Model with x1 and x2

β1 (Mother age) 0.840 0.343
(0.379) (0.398)

β2 of x2 (Mother Edu level) 5.107 4.711
(1.233) (1.317)

β0 67.783 76.143 69.155
(8.688) (2.792) (8.571)

Observations 400 400 400
R2 0.012 0.041 0.043

R2 does not change either. A mechanism behind this result goes like this. A mother’s age in
itself does not have any predictive power for a child’s test score. The reason we see a positive
relationship between these two variables in the simple regression is because the impact of a
mother’s education level is felt through a mother’s age. When we include a mother’s education
level and estimate the impact of a mother’s age, we see a dramatic decrease in the magnitude and
the predictive power of this predictor.

To understand why a mother’s age loses a predictive power when adding a mother’s educational
level as another predictor, Figure 4 visualizes the impact of a mother’s age on a child’s score
conditional on a mother’s educational level. The sign of the regression line flips in 4 different
education levels, explaining why we have reduced magnitude and predictive power of a mother’s
age when we include a mother’s educational level as another predictor.

3.2 Multiple predictors with interactions

Now let us turn our attention to another intriguing example that highlights the strength of the mul-
tiple linear regression model. Here, we will introduce interactions between predictors. Equation 12
shows the regression specification with two predictors and their interaction.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε (12)

The key difference between the regression models with and without interactions is that the impact
of the predictor comes from two different sources. β1, for example, still represents the impact
of predictor x1 but it is not the unique effect. When there is an interaction, the impact also
comes from the interaction coefficient β3 whose magnitude depends on the values of interacting
predictor, x2.

7

To get some intuition, let us illustrate this point with data. As before, x1 is a continuous
variable and x2 is a discrete variable taking the value of 0 and 1. Figure 5 visualizes the linear

7Taking a partial derivative of y with respect to x1 makes it clear that the partial effect of x1 depends on x2:
∂y
∂x1

= β1 + β3x2
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Figure 4: Child’s test score vs. Mother’s age conditional on Mother’s educational level.

relationship between y and x1 (left) and the same relationship conditional on x2 (right). The key
difference between Figure 1 and Figure 5 is that the slopes of two individual regression lines for
each group have an opposite sign. This small change makes a dramatic difference in the regression
model with and without interactions.

To see this point, Table 6 compares three different regression results: a model only with x1,
a model both with x1 and x2, and a model both with x1 and x2 and their interaction x1 × x2.
The first simple linear regression model fails to capture the completely different pattern of a
linear relationship in two groups. Interestingly, the second regression model both with x1 and x2
fails either and does not capture the positive slope in Group 1 as can be shown in the negative
coefficient of β1 (-0.197). β2 in this model only determines the changes in the y−intercept and
does not capture the changes in the slope of lines between two groups.

Contrast to the first two models, the model with an interaction correctly captures the changes
in the slope across groups. Let’s see how we can tease out this information from the results:

y = 1.818− 1.482x1 + 0.548x2 + 2.357x1x2 + ε

First, as before, β0 = 1.818 is the y−intercept for Group 0 (x1 = 0 and x2 = 0). For
Group 1, the y−intercept is 1.818 + 0.548 = 2.366 (x1 = 0 and x2 = 1). The partial effect
of x1 comes from two different sources: the standalone coefficient β1 = −1.482 and the
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Figure 5: Multiple regression example: varying slope

interaction coefficient β3 = 2.357. Most importantly, the interaction coefficient depends on
which group we are looking at. For Group 0, β3 is multiplied by 0, so the partial effect
of x1 is −1.482 + (2.3570) = −1.482. So, β1 is interpreted as the unique effect of x1 on y
only for Group 0 (x2 = 0). For Group 1, β3 is multiplied by 1, so the partial effect of x1 is
−1.482 + 1 × 2.357 = 0.875. That is, β1 + β3 is interpreted as the unique effect of x1 on y
only for Group 1 (x2 = 1). This result correctly represents the changes in the slope of re-
gression lines in the right panel of Figure 5: -1.482 for Group 0 in blue and 0.875 for Group 1 in red.

This result suggests that when we have multiple predictors and want to understand their impact
on a certain outcome variable, it is the best practice to include their interaction terms as much as
possible to account for potential changes in the linear relationship across groups8.

8This applies to continuous variables as well since we can interpret a continuous variable as containing infinitely
many groups.
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Table 6: Regression result for models with interactions

Outcome variable:

y

Model only with x1 Model with x1 and x2 Model with x1, x2 and x1 × x2

β1 -0.194 -0.197 -1.482
(0.224) (0.222) (0.306)

β2 0.742 0.548
(0.425) (0.397)

β3 of x1 × x2 2.357
(0.415)

β0 2.090 1.719 1.818
(0.215) (0.301) (0.280)

Observations 200 200 200
R2 0.004 0.019 0.158

A OLS estimator in matrix form

Consider the linear regression model9

y = Xβ + ε,

y is a n× 1 vector, X is a n× k matrix, β is a k × 1 vector, and ε is a n× 1 vector. Assume that

ε
iid∼ N(0, σ2

ϵ I).
The OLS minimizes the sum of squared residuals, which we denote by L:

argminL
β

= (y −Xβ)′(y −Xβ)

= y′y − β′X′ y − y′Xβ + β′X′Xβ

= y′y − 2y′Xβ + β′X′Xβ (13)

The necessary condition for a minimum is:

∂ L

∂β
= −2X′ y + 2X′Xβ = 0 (14)

Let β̂ be the solution. Then, β satisfies X′Xβ = X′ y which results from the necessary condition
above. If the inverse of X′X exists, which it does by assumption (assumption of full rank), then
the solution is:

β̂ = (X′X)−1X′ y (15)

which is the OLS estimator.

9See Greene (2018) for more detailed proof.
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The expected value of β is derived as follows. Since β̂ = (X′X)−1X′ y, we can write

β̂ = (X′X)−1X′(Xβ + ε)

= (X′X)−1X′Xβ + (X′X)−1X′ ε

= β + (X′X)−1X′ ε (16)

Therefore,

E(β̂|X) = β + E((X′X)−1X′ ε|X)
= β + (X′X)−1X′E(ε|X)
= β (17)

since E(ε|X) is assumed to be zero.

The variance of the error vector ε is derived as follows. We have β̂ = (X′X)−1X′(Xβ + ε) =
β + (X′X)−1X′ ε. So, the variance of the least squares estimator is:

V ar(β̂|X) = E((β̂ − β)(β̂ − β)′|X)
= E((X′X)−1X′ εε′X(X′X)−1|X)
= (X′X)−1X′ E(εε′|X)X(X′X)−1

= (X′X)−1X′(σ2I)X(X′X)−1

= σ2(X′X)−1 (18)

where the last step follows from the assumption E(εε′) = σ2
εI.

The proof of σ̂2 = 1
n−k

∑n
i (yi − ŷi)

2 is mathematically more involved. Let’s first define the
vector of least squares residuals e, which we will call residuals as before,

e = y −X β̂

= y −X(X′X)−1X′ y

= (I−X(X′X)−1X′)y = My (19)

where the n × n matrix M is the “residual maker,” the matrix that produces the residuals when
it pre-multiplies any vector y. Note that MX = 0, because if X is regressed on X, we will have a
perfect fit and the residuals will be zero. This makes

e = My = M(Xβ + ε)

= M ε (20)

since MXβ = 0. From here, we can calculate the expected value of the sum of squared residuals
as an (unnormalized) estimator of σ2. The expected value of the sum of squared residuals is

E(e′e|X) = E(ε′M ε|X) (21)

Note that e′e = ε′M′M ε = ε′M ε since the residual maker M is idempotent, meaning that its
multiplication yields itself: MM = M′M = MM′ = M.
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We can rewrite ε′M ε in terms of its trace, the sum of elements on the main diagonal of the
matrix, since it is a scalar (1× 1 matrix). Using the property of the trace tr(CAC) = tr(ACC), we
obtain

E(tr(ε′M ε)|X]) = E(tr(M ε′ε)|X]) (22)

which can be rewritten as

tr(ME(ε′ε|X)) = tr(Mσ2 I) = σ2 tr(M) (23)

Here, an important result is derived from the trace of M. Since M = In−X(X′X)−1X′, its trace
is tr(In)− tr((X′X)−1X′X). Note that − tr((X′X)−1X′X) = tr(IK) due to the similarity invariance
of the trace that tr

(
P−1AP

)
= tr(A), where in our case A is an identity matrix I. Therefore,

tr(M) = In− IK = n−K. (24)

Then we have

E(e′e|X) = (n−K)σ2 (25)

which leads to our estimator for σ2

σ̂2 =
e′e

n−K

=
1

n− k

n∑

i

(yi − ŷi)
2 (26)
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1 Issues with the linear regression model

Even though the linear regression model is a powerful tool for analyzing correlation in data, its scope
is rather limited due to the normality assumption of errors. For example, when the outcome variable
is discrete, we cannot use the linear regression with normal errors because a normal distribution is
defined for continuous variables. The same goes for a bounded outcome variable. When we know
that the outcome variable is bounded between 0 and 1 , it does not make too much sense to assume
that the error of the outcome is distributed normally. Generalized linear regression models we will
discuss in this section address this deficiency of the linear regression model with normal errors and
consequently allow us to analyze relations in many different types of variables.

2 Basic framework

To avoid the use of the matrix algebra, the mathematical exposition of the model will only involve
a simple linear prediction with one predictor.

2.1 Link function

The linear regression with a normal error can be expressed as follows:

y ∼ N(µ, σ2) (1)

µ = α+ βx (2)

This expression says that the outcome variable y is normally distributed with a linear mean pre-
diction of α+ βx. The generalized linear model (GLM) generalizes the normality assumption but
keep the linear prediction part.

y ∼ f(θ, ϕ) (3)

g(θ) = α+ βx (4)

f is any outcome distribution with two sets of parameters: θ and ϕ. θ is related to the
linear predictor through g: g(θ) = α + βx. This function g is called a link function and
it links the linear prediction α + βx to the parameter of the outcome distribution f . It
can take any form depending on the type of the parameter of the outcome distribution. ϕ
represents the additional set of parameters that are not part of linear prediction but are
necessary for the outcome distribution to work. The GLM is a “generalized” version of the lin-
ear regression because we can freely choose f and g depending on types of data and our hypotheses.

To better understand how f and g can be chosen, let’s look into two widely-used GLMs:
Binomial-logistic regression and Poisson regression.

2.2 Binomial-logistic regression: outcome variable either 0 or 1

In real life, we encounter all sorts of binary outcomes such as pass/fail, hit/miss, life/death, or
win/lose. Suppose we have some variables to predict the chance of pass or fail, e.g. the duration
of study time. How can we construct a regression model in this case? A Binomial-logistic
regression model is a tool for examining the correlation between this binary outcome and some
linear predictors. Before we set up f and g for this regression model, let’s look at a type of
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data we are dealing with. Table 1 shows two example datasets with the discrete outcome (y)
and one predictors (x): binary outcomes (left) and repeated binary outcomes out of n trials (right).

Obs. y n x

1 0 1 8.45
2 1 1 9.02
3 1 1 10.56
4 1 1 11.35
...

...
...

...
98 1 1 7.35
99 0 1 8.14

100 1 1 10.36

Obs. y n x

1 3 6 9.70
2 2 8 8.00
3 3 7 9.79
4 2 6 7.41
...

...
...

...
48 4 5 8.60
49 3 7 10.93
50 3 5 12.81

Table 1: Data with (repeated) binary outcomes y

The key characteristic of the data is that the outcome variable y is either 0 or 1 or the sum
of repeated binary outcomes given n. To model this, we need to specify an outcome distribution
that gives either 0 or 1 (or the sum of repeated binary outcomes given n). The Binomial-logistic
regression model uses the binomial distribution as the outcome distribution f since its random
variable is the sum of the repeated binary outcomes y given the success probability p and the
number of trials n. When n = 1, the binomial distribution is equivalent to the Bernoulli distribution
whose random variable takes the value 1 with probability p and the value 0 with probability 1− p.
In this model, the linear predictor α + βx determines the probability of success p given the link
function g:

y ∼ Binomial(n, p)

g(p) = α+ βx (5)

That is, the outcome variable is distributed according to the binomial distribution and the prob-
ability parameter as a function of the linear predictor. Then, what is a right link function g that
links the linear predictor α + βx to the probability p? Here, it is more intuitive to think of this
problem by taking the inverse of the link function, that is p = g−1(α + βx). In our binomial
outcome distribution, p is a “probability” so the output of g−1 should lie between zero and one.
There are several candidates for such a function, such as a CDF of any distributions (but partic-
ularly a normal distribution) but we will focus on a particular function called logistic function in
this section. This is because the logistic function is easy to interpret and is mathematically more
tractable compared to its counterparts. The logistic function is defined as follows

logistic(x) =
1

1 + e−x
=

ex

ex + 1
, (6)

where ex is the exponential function. The logistic function looks like an S-shaped curve and
converges to 0 and 1 (see Figure 1), meaning that it properly links the domain of α + βx to the
probability domain of p between 0 and 1.

Using this logistic function as the “inverse” link function g−1(.) = logistic(.), we have
logistic−1(p) = α+ βx. This inverse logistic function is known as the logit function

logistic−1(p) = logit(p) = ln

(
p

1− p

)
= α+ βx (7)
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Figure 1: Logistic distribution.

Note that the logit function is often called the log-odds function. The odds gives how more likely
the probability (of success) as opposed to the probability of failure. For example, if the success
probability p = 0.9, then the odds is 9, meaning that the success is 9 times more likely than the
failure. The log-odds is just the logarithm of the odds and changes its scale from [0,∞] to [−∞,∞].
Despite its mathematical usefulness, the log-odds is not always intuitive to interpret. Therefore,
we will use the logit function as a mathematical too to link p and α+βx without paying too much
attention to log odds interpretation. Using the logit link function, we now have a complete model
specification for binomial-logistic regression.

y ∼ Binomial(n, p)

logit(p) = α+ βx (8)

We will examine how to estimate and interpret this binomial-logistic regression in Sections 3 and
4.

2.3 Poisson regression: integer outcome variable

Let’s now introduce one more GLM, called Poisson regression. This model is useful when the
outcome variable is an integer (count data), e.g. the number of patients waiting when you arrive
at the hospital between 2 and 3 pm, the number of bombs hitting in the south of London during
World War II. Unlike the binomial outcome variables, it does not have to be based on a number
of independent trials.

The outcome variable y is modeled using the Poisson distribution with the rate parameter λ
whose functional form is

f(y;λ)) =
λye−λ

y!
. (9)

Both the expected value and the variance are E[y] = Var(y) = λ. See Figure 2.
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Figure 2: Poisson distribution with varying parameter λ.

The parameter λ > 0 represents the rate parameter or the average number of occurrence. In
the Poisson regression, the linear predictors α + βx determine this rate parameter given the link
function g:

y ∼ Poisson(λ)

g(λ) = α+ βx

Then, what is the right link function g for Poisson regression? Again, let’s first take the inverse
of the link function: λ = g−1(α + βx). We can immediately see that the output of g−1 should be
greater than zero. For this matter, the Poisson regression uses an exponential function since its
output is always positive. Using this exponential function as the “inverse” link function g−1(x) = ex,
we have ln(λ) = α+ βx. Therefore, the complete model specification of Poisson regression is

y ∼ Poisson(λ) (10)

ln(λ) = α+ βx (11)

For both binomial-logistic and Poisson regression, the relationship between the linear prediction
and the outcome variable is mediated by the link function. This makes the interpretation of the
coefficients more challenging as we will discuss in Section 4.

3 Model estimation

We will now discuss how to estimate these two GLMs. It is important to note that GLMs violate
the normality assumption of errors so we cannot use the OLS method. For this reason, the GLMs
are often estimated by MLE or Bayesian method. In this section, we will briefly discuss the basic
framework of the MLE estimation of logistic and Poisson regression.
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3.1 Binomial-logistic regression

As we discussed in Topic 3, the MLE finds the hypothesis θ̂ that has the maximum likelihood value

θ̂ = arg max
θ∈Θ

L̂m(θ |y) (12)

where θ is a set of parameters of the model and m is the number of observations. The functional
form of the binomial distribution with the parameter p is f(y; p) =

(
n
y

)
py(1− p)n−y for y ∈ {0, 1}

meaning that the probability of success is p and the probability of failure 1 − p. We can drop
the binomial coefficient

(
n
y

)
since it is a constant. The likelihood function is then L̂m(p |y) =∏m

i=1 p
yi
i (1− pi)

ni−yi and the log-likelihood of the binomial-logistic regression can be written as

l̂m(p|y) = ln
m∏

i=1

pyii (1− pi)
ni−yi

=
m∑

i=1

yi ln(pi) +
m∑

i=1

(ni − yi) ln(1− pi)

=
m∑

i=1

ni ln(1− pi) +
m∑

i=1

yi ln

(
pi

1− pi

)

Since (1 − pi) = 1
eα+βxi+1

and ln( pi
1−pi

) = α + βxi from Equation 7, we can rewrite the log-
likelihood as follows

l̂m(p|y) =
m∑

i=1

ni ln(e
α+βxi + 1)−1 +

m∑

i=1

yi(α+ βxi) (13)

Therefore, to get the MLE estimator for α, β, we need to solve the following optimization
problem

α̂, β̂ = arg max
α,β

m∑

i=1

ni ln(e
α+βxi + 1)−1 +

m∑

i=1

yi(α+ βxi) (14)

However, it is not possible to solve this program exactly and find a closed-form expression for
the estimator. This is because when we set the derivatives of the log-likelihood equal to zero, we
have α, β appearing both as an argument to an exponential function and a linear addition. This
type of equation, which is called transcendental equations is not solvable analytically. (See 4.1 for
an example) This means that we need to use some approximation methods. Luckily, there are
well-established algorithms that enable us to find the MLE estimators approximately. Examining
these algorithms in detail is beyond the scope of this course. Instead, we will briefly discuss some
intuitions behind the numerical approximation method in Section 4.

3.2 Poisson regression

Now let’s set up the MLE for Poisson regression.The functional form of the Poisson distribution is

f(y;λ) =
λye−λ

y!
. Therefore, the likelihood function is L̂n(λ |y) =∏n

i=1
λyie−λ

yi!
and the log-likelihood
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of the Poisson regression can be written as

l̂n(λ|y) = ln
n∏

i=1

λyie−λ

yi!

=
n∑

i=1

ln

(
e−λλyi

yi!

)

= −
n∑

i=1

λ+
n∑

i=1

yi ln(λ)−
n∑

i=1

ln(yi!). (15)

Since λ = eα+βx from Equation 11, we can rewrite the log-likelihood as follows

l̂n(λ|y) = −
n∑

i=1

eα+βxi +
n∑

i=1

yi(α+ βxi)−
n∑

i=1

ln(yi!). (16)

As we did with the binomial-logistic regression, we need to solve the following optimization
problem to get the MLE estimator for α, β

α̂, β̂ = arg max
α,β

−
n∑

i=1

eα+βxi +

n∑

i=1

yi(α+ βxi)−
n∑

i=1

ln(yi!). (17)

Same as the binomial-logistic regression, there is no closed-form solution to this problem due
to the transcendental equation. We will show below how to use an approximation method to get
α, β.

4 Examples and interpretation of estimated parameters

4.1 Examples of binomial-logistic regression

Data and MLE estimator
Suppose we have 4 data points of y which are modelled to be binomially distributed:

yi ∼ Binomial(ni, pi),

where pi is the probability of success given a predictor xi. The data are

Obs. y n x

1 1 9 0.71
2 0 1 0.25
3 2 5 0.39
4 3 7 0.09

The linear predictor is expressed through the logit link function is logit(pi) = α+βxi. Therefore,

logit−1(α + βxi) =
e(α+βxi)

1+e(α+βxi)
, and our log likelihood function in terms of the parameters α and β

is:
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l̂4(α, β|y, x, n) =
4∑

i

yi log
(
logit−1(α+ βxi)

)
+

4∑

i

(ni − yi) log
(
1− logit−1(α+ βxi)

)

=
4∑

i

yi log

(
e(α+βxi)

1 + e(α+βxi)

)
+

4∑

i

(ni − yi) log

(
1− e(α+βxi)

1 + e(α+βxi)

)

=

4∑

i

yi

(
α+ βxi − log(1 + e(α+βxi))

)
− (ni − yi)

(
log(1 + e(α+βxi))

)

=

4∑

i

yi(α+ βxi)− ni log(1 + e(α+βxi))

Now, let’s get the FOC (the analytical gradient) of the log likelihood function:

∂l̂4(α, β|y, x, n)
∂α

=

4∑

i=1

yi −
nie

(α+βxi)

1 + e(α+βxi)

∂l̂4(α, β|y, x, n)
∂β

=

4∑

i=1

yixi −
nixie

(α+βxi)

1 + e(α+βxi)

When we set this derivative to zero, we have α + βxi appearing both as an argument to an
exponential function. As we discussed in Section 3, this transcendental equation is not solvable
analytically. Instead, we need a numerical approximation.

Numerical approximation
The most primitive approach is to directly plug some possible numbers of α and β and pick

the pair that has the highest log-likelihood. This is called a grid approach. To get some intuition,
Table 2 shows the normalized log-likelihood for some values of α and β. It shows that α roughly
between -0.25 and 0.25 and β between -3 and -2 has the highest log-likelihood value.

Table 2: Normalized log-likelihood for some values of α (rows) and β (columns)

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
-0.75 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.01
-0.5 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01

-0.25 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.01 0.00
0 0.01 0.01 0.01 0.02 0.03 0.03 0.02 0.02 0.01 0.00 0.00

0.25 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.00 0.00 0.00
0.5 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00

0.75 0.01 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00
1 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

We can use more fine-grained α and β values to get a more accurate picture of the high log-
likelihood region. Figure 3 visualizes the log-likelihood given some possible ranges of α and β.

It is clear that some areas have higher log-likelihood (yellow) while other areas have lower
values (red). If we use a more fine-grained sequence of α and β, we can get a more clear picture.
This primitive grid approximation is the basis of the standard numerical optimization algorithms,
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Figure 3: Visualization of the log likelihood given some rages of α and β.

which in effect use the numerical gradient of the objective function (log-likelihood function)
given the very small change (similar to the fine-grained sequence of the grid) of the parameters.
When the small change, which we denote by ϵ, is very small enough, the difference between the
analytical and the numerical gradient becomes negligible. We can see this by plugging some
random numbers in both analytical and numerical gradient and calculate the difference.

The numerical gradient of the log likelihood can be obtained by finding its rate of change given
very small change of α and β:

∆l̂4(α, β|y, x, n)
∆α

=
l̂4(α+ ϵ, β | y, x, n)− l̂4(α− ϵ, β | y, x, n)

2ϵ

∆l̂4(α, β|y, x, n)
∆β

=
l̂4(α, β + ϵ | y, x, n)− l̂4(α, β − ϵ | y, x, n)

2ϵ

We calculate the difference between the analytical and numerical gradient by plugging 10,000
pairs of random numbers generated from Uniform(−10, 10). The mean of the difference is

∂l̂4(α, β|y, x, n)
∂α

− ∆l̂4(α, β|y, x, n)
∆α

= 0.000000157

∂l̂4(α, β|y, x, n)
∂β

− ∆l̂4(α, β|y, x, n)
∆β

= −0.0000000259

which are almost zero, implying that the analytical and numerical gradients have almost the same
value. The following is the histogram of each difference, again showing that the distributions
degenerate very close to zero. This result gives some confidence about the reliability of the
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Figure 4: Visualization of the log likelihood given some ranges of α and β.

numerical approximation of MLE estimators (at least for simple problems).

Numerical optimization (or computational algorithm in general) is the backbone of the
statistical work and has gained more and more attention these days as the models become more
complex and the size of data becomes larger. Discussing further details of numerical optimization
is beyond the scope of this course. We will instead use some standard numerical optimization
techniques (Newton-type algorithms) to solve our GLM models.

Different statistical softwares have different optimization tools. For R, nlm and optim functions
are most widely used.1 Using nlm, we can numerically approximate the MLE estimators as follows:

α̂ = −0.00163

β̂ = −2.587

which is roughly the center of the grid in Figure 3.

Interpretation of coefficients
Then, how can we interpret these coefficients in the link function?

p =
1

1 + e−(−0.00163−2.587x)

Before we answer this question, let’s get some intuition by drawing our logistic link function 8
with varying α and β values in Figure 5. The left plane shows that α shifts the location of the
logistic curve. Same as the linear regression, α needs to be evaluated assuming x = 0. When
α = 0, the logistic curve centers at 0, meaning that the probability of x = 0 is 0.5. When α = 3
the curve (blue) shifts left and has a higher probability at any point of x compared to the curve
with α = 0. At x = 0, the curve with α = 3 has p = 0.952.2 In contrast, when α = −3, the curve
(green) shifts right and has a lower probability at any point of x compared to the curve with

1glm function is specially designed for GLM models but is less flexible.
2The curve shifts from zero by −α/β because α+ β ∗ x = β(x+ α/β).
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Figure 5: Logistic link function with varying values of α and β.

α = 0. At x = 0, the curve with α = −3 has p = 0.047.3

The right plane shows that β determines the shape of the curve. Most obviously, when it is
negative, it has a negative relationship between p and x, and makes p a monotonically decreasing
function of x. When positive, p and x have a positive relationship. Further, β determines the
overall curvature of the curve. The larger |β|, the steeper the curvature. Note that the actual
slope (the first derivative) of the logistic curve depends on x. The first derivative of the logistic
curve logit−1(α + βxi) = 1/(1 + e−(α+βxi)) is βe−(α+βxi)/(1 + e−(α+βxi))2. This slope can be
evaluated at any points of interest, but is often evaluated at the central value since the slope is
steepest at its center and gives its upper bound. If it is evaulated at the center of the logistic
curve −α/β (see footnote 2), the slope always is 4/β. This is the divide by 4 rule.

Since α determines the location of the curve, α = −0.00163 in our exercise, meaning that
when x = 0, p = 0.4995.

β = −2.587 suggests that x and p have a negative relationship. At x = 0, we have
−2.587e−0.00163/(1 + e−0.00163)2 = −0.647. This means that a unit increase in x leads to -0.647
reduction in p when the reference point is at x = 0.

4.2 Examples of Poisson regression

Data and MLE estimator
Suppose we have a pair of discrete data as shown in Table 3. We can visualize x vs. y in Figure 6.

Since the outcome variable y is discrete, we will be using a Poisson model as follows

yi ∼ Poisson(λ),

3When the predictor cannot be zero, the intercept loses intrinsic meaning and needs to be evaluated at some fixed
value of x, e.g. the mean of the predictor.
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Table 3: Poisson Data

Obs. y x

1 3 1
2 5 2
3 2 3
...

...
...

8 37 8
9 35 9
10 51 10
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Figure 6: Visualization of data in Table 3.

where λ is the rate parameter of the Poisson distribution. The linear predictor is expressed through
the exponential link function as follows:

log(λ) = α+ βxi.

Therefore, our log-likelihood function in terms of the parameters α and β is:

l̂(α, β|y, x) = log(
10∏

i=1

(e(α+β∗xi))yie(−e(α+βxi))

yi!
)

=
10∑

i=1

log(
(e(α+β∗xi))yie(−e(α+βxi))

yi!
) (18)

=

10∑

i=1

yi(α+ βxi)− e(α+β∗xi) − log(yi!)

The first derivative are:

∂log(p(α, β|y))
∂α

=

10∑

i=1

yi − e(α+β∗xi)

∂log(p(α, β|y))
∂β

=
10∑

i=1

yixi − xie
(α+βxi)
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Similar to the binomial-logistical MLE, when we set this derivative to zero, we have α + βxi
appearing as an argument to an exponential function, and cannot be solved analytically. Instead,
we need a numerical approximation.

Numerical approximation
Using nlm, we can find the MLE estimators as follows:

α̂ = 0.786

β̂ = 0.320

Interpretation of coefficients
How can we interpret these coefficients in the link function?

λ = e(0.786+0.320x)

α = 0.786 is the intercept of the regression with x = 0. This means that the rate parameter λ
is e(0.786) = 2.195 at x = 0, leading to the expected value of y being 2.195 at x = 0 due to the
property of the Poisson distribution that E[X] = λ. The coefficient β is the expected change in y
on the logarithmic scale (or the percentage change) for a unit change in x. This is because a change
in x is linked through the exponential function. To understand this point, let’s take look at Figure 7.
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Figure 7: Exponential functions on the non-log and log scale

The left panel is the exponential function e(0.786+0.320x) on the non-log scale and the right
panel is the exact same exponential function on the log scale of y. It shows that the exponential
function is log-linear, meaning that a unit increase in x leads to a unit increase in λ on the log scale.

In our example, therefore, β = 0.320 means that a unit increase in x predicts (e0.32− 1)× 100%
increase in the expected value of y.
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Topic 6 discussed the limitations of the linear regression model and introduced generalized
linear models that allow for a more flexible choice of outcome variables. Topic 7 will
show another way of generalizing the linear regression model and discuss the hierarchical
linear model, also known as the varying coefficient, multilevel, or mixed effect model. The
very basic idea of the hierarchical linear model is that the regression coefficients vary by
different groups but their variations are structured by a higher level determinant, often called
hyperparameters. This model is useful when there are heterogeneous groups in the data and we
want to understand variation across groups without overfitting the model. Due to the complex
nature of the hierarchical model, it gained popularity only recently with advanced computing power.

Learning basics about the hierarchical linear model is not too challenging. The concepts are
straightforward, the mathematical representation is intuitive, and the model implementation is
reasonably easy thanks to programming packages. One key impediment, however, lies in semantics.
Some of the key concepts in the hierarchical model, such as fixed/random effects, have been used in
widely different contexts across different disciplines. For this reason, some students, especially those
who have learned these concepts one way or another, often experience a steep learning curve in the
course. To eliminate the source of confusion, this chapter will discuss how these basic concepts are
understood in different statistical models and help students to focus more on the substance of the
model than on semantics.

1 Multigroup data

1.1 Data structure

The type of data we are interested in is multigroup data in which observations can be batched
into multiple groups. This grouping is justified by the heterogeneous characteristics inherent
in each group (e.g. gender, religion, country). Figure 1 shows an example of multigroup
data: the firm-level financial statement, which has group-variables such as country, year, and sector.

As can be seen in this example, the multigroup data can include a time variable, meaning that
there are repeated observations of the same variables (e.g. company’s sales) over some periods
of time. When data includes measurements over time along with other group-level variables (e.g.
country or sector), it is often called panel data. There is a reason why the time dimension is
distinguished from other group-level variables: time-series measurements are often correlated. For
example, if the GDP in Canada grows faster than average in one year, it is likely that it will
grow faster than average as well in the following year. Therefore, when the data involves time-
series measurement, we should consider the possibility of autocorrelation, a cross-unit dependence
of variables across time. A detailed discussion on autocorrelation in panel data, however, is beyond
the scope of this course. Therefore, this chapter will focus on the regression model using particular
multigroup data with no cross-unit dependence over time.

1.2 Potential issues

Even without the issue of autocorrelation, analyzing multigroup data poses unique challenges
that can not be easily solved within a simple regression framework. These challenges result from
potential heterogeneity across different groups. Further, we often do not know what causes the
group-level heterogeneity due to the lack of data that could account for the source and the degree
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Figure 1: Multilevel data example: Corporate financial statement

of heterogeneity.

This unique feature of multigroup data raises two important research questions. i) if the
linear relationship between variables behaves differently across groups, how can we obtain
the overall linear relationship between variables across different groups while adjusting for
group-level heterogeneity? ii) if we are interested in group-level difference itself, how can we
set-up a single regression model such that we can estimate the degree of group-level difference in
target coefficients (intercepts and slopes) without repeating the same regression for different groups?

In the following sections, we will overview several regression models to answer these questions.

1.3 Simpson’s paradox revisited

To better understand some of the issues involving multigroup data, let’s revisit Simpson’s
paradox, a statistical phenomenon where including another predictor reverses or nullifies
the association between existing predictors and the outcome variable. As we discussed
in Topic 5, this concept has a close connection to regression with multigroup data since
including group-variable can have an impact on the target coefficients. To see this point,
suppose we are interested in the impact of speeding fines on car accidents in three different
countries, A, B, and C.1 Table1 shows the average number of car accidents and the average
fine for speeding tickets. It shows that the correlation between these two variables is
positive, meaning that when the average speeding ticket is more costly, there are more

1We will be ruling out reverse causality for the sake of simplicity.
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car accidents. This is somewhat counter-intuitive since a higher penalty should reduce car accidents.

Table 1: Car accident vs. speeding ticket

Country # of Accidents Ticket fine ($)

A 229 100
B 239 103
C 250 105

Now, let’s look at the full panel data in Table 2. The correlation between the number of car
accidents and speeding tickets becomes negative when we look at each of the counties, A, B, and
C, separately.

Table 2: Car accident vs. speeding ticket, full panel

Country Year # of Accidents Ticket fine ($)

A

2000 221 102
2001 223 102
2002 232 100
2003 233 100
2004 237 98
2005 231 99

B

2000 243 101
2001 242 103
2002 237 104
2003 231 106
2004 244 100
2005 234 104

C

2000 251 104
2001 249 106
2002 250 106
2003 254 103
2004 245 107
2005 249 105

This point can be seen more clearly in Figure 2. The left side plot shows the linear relationship
between car accidents and speeding tickets without the country-level variable, meaning that obser-
vations are pooled across all three countries. Similar to the positive correlation found in Table 1,
there is a clear positive relationship. In contrast, the right side plot shows the same relationship
conditional on the country-group. Here, the sign of the linear relationship changes, and the car
accidents and speeding tickets have a negative relationship. This is typical of Simpson’s paradox
situation and suggests that carrying out a regression without adjusting for group-level heterogeneity
can lead to misleading results.

1.4 Group-level varying effects with dummy variables

Then, how can we estimate the linear relationship between variables adjusting for group-level
heterogeneity? As we discussed in Topic 5, the simplest and most straightforward approach is to
include the group-level variable as another predictor along with other predictors in the multiple
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Figure 2: Car accident vs. speeding ticket, pooled & country-level

regression setting. Since the multiple regression allows us to estimate the coefficient of one
variable holding other variables constant, we can estimate the impact of the main predictors on
the outcome variable while accounting for the group-level difference.

One way to include a group-level variable in the regression is to use an indicator variable with
0, 1, which is often called a dummy variable. Each observation has a corresponding dummy variable
indicating whether this observation is included in each group. For example, if the first observation
is from Country A, the dummy variable for Country A is 1 for this observation, while the dummy
variables for Country B and C are 0. Table 3 shows how to use dummy variables to indicate
group-membership. This table is the same as Table 2 but with separate country and year dummy
variables. The first observation, for example, is from Country A and Year 2000.

Table 3: Table 2 with country and year dummy variables.

Obs. Accident Fine ($) Ctry A Ctry B Ctry C Y 2000 Y 2001 Y 2002 Y 2003 Y 2004 Y 2005

1 221 102 1 0 0 1 0 0 0 0 0
2 223 102 1 0 0 0 1 0 0 0 0
3 232 100 1 0 0 0 0 1 0 0 0
4 233 100 1 0 0 0 0 0 1 0 0
5 237 98 1 0 0 0 0 0 0 1 0
6 231 99 1 0 0 0 0 0 0 0 1
7 243 101 0 1 0 1 0 0 0 0 0
8 242 103 0 1 0 0 1 0 0 0 0
9 237 104 0 1 0 0 0 1 0 0 0
10 231 106 0 1 0 0 0 0 1 0 0
11 244 100 0 1 0 0 0 0 0 1 0
12 234 104 0 1 0 0 0 0 0 0 1
13 251 104 0 0 1 1 0 0 0 0 0
14 249 106 0 0 1 0 1 0 0 0 0
15 250 106 0 0 1 0 0 1 0 0 0
16 254 103 0 0 1 0 0 0 1 0 0
17 245 107 0 0 1 0 0 0 0 1 0
18 249 105 0 0 1 0 0 0 0 0 1

Since we have two different group variables in our data, we can include each of the two variables
or both of them. To see how the estimated impact of speeding fine on car accidents changes in
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different models, let’s look into the following four regression models:

yct = β0 + β1xct + uct (1)

yct = β0 + β1xct + α2CtryB + α3CtryC + uct (2)

yct = β0 + β1xct + γ2Y2001 + γ3Y2002 + · · ·+ γ6Y2005 + uct (3)

yct = β0 + β1xct + α2CtryB + α3CtryC + γ2Y2001 + γ3Y2002 + · · ·+ γ6Y2005 + uct (4)

where

yct is the car accident of country c in year t

xct is the speeding fine of country c in year t

uct is the idiosyncratic error for the observation country c in year t

Ctryc is a dummy variable (or indicator variable) for Country c: if the observation is in
Country c, Cc = 1. Otherwise, Cc = 0

Yt is a dummy variable for Year t:if the observation is in Year t, Yt = 1. Otherwise, Yt = 0

Eq 1 is a simple regression model for pooled data where we ignore the group-level variables.
Eq 2 is a multiple regression model with the country dummy variable, while Eq 3 is a model with
the year dummy variable. Finally, Eq 4 is a regression model with both the country and year
dummy variables.

Note that we do not have a dummy variable for Country A and Year 2000 to avoid perfect
multicollinearity (the dummy variable trap), meaning that the reference point when all dummy
indicators are zero is Country A in Year 2000. Therefore, β0 estimates the baseline car accidents
for Country A and Year 2000 (a hypothetical number of car accidents when the speeding fine is zero).

This model is often called a fixed effect model in some disciplines.2 Since the dummy variable
takes either zero or one, these models can be written more cleanly as follows, which is a typical
fixed effect model specification:

yct = β0 + β1xct + uct (5)

yct = β1xct + αc + uct c = 1, 2, 3 (6)

yct = β1xct + γt + uct, t = 1, · · · , 6 (7)

yct = β1xct + αc + γt + uct (8)

αc estimates the overall change in the number of car accidents in Country c relative to Country
A, adjusting for the year-specific heterogeneity and the speeding fine. In the standard panel data
analysis, this coefficient is called a country fixed effect because the effect is fixed across all years.
Similarly, γt estimates the overall change in the number of car accidents in Year t relative to
Year 2000, adjusting for the country-specific heterogeneity and the speeding fine. This is a year
fixed effect because the effect is fixed across all countries. Finally, β1 estimates the impact of the
speeding fine on the number of car accidents, adjusting for both country- and year-fixed effects.

2More precisely, estimators obtained from the dummy variable regression (Least Square Dummy Variable, LSDV)
are algebraically equivalent to the fixed effect estimators, which can be obtained via mean-differencing (within esti-
mator).

6



Before we move to the estimation result of these models, let us examine some definitional
issues involving the “fixed effect.” In the above-mentioned models, fixed effect coefficients refer to
coefficients that are fixed across other variables: the country fixed effects are fixed across different
years while the year fixed effects are fixed across different countries. Confusingly, these fixed effect
coefficients do vary by their own group variable: the country fixed effects vary by Country A, B
and C, while the year fixed effects vary by different years. As we shall see, the fixed effect has a
completely different definition in a Bayesian multilevel model where it refers to coefficients that do
not vary by groups. To avoid unnecessary confusion involving definitional issues across different
disciplines, I will try to minimize the use of terms “fixed effect” (and “random effect”) and focus
more on the model property itself.

Table 4: Estimation results of the four models in Eq 1 - 4.

Outcome variable:

Car accidents

Eq 1 Eq 2 Eq 3 Eq 4

Car accident 1.400 -2.438 1.644 -2.777
(0.864) (0.347) (1.052) (0.313)

Country B 15.201 16.044
(1.652) (1.374)

Country C 31.537 33.123
(2.148) (1.850)

Year 2001 -3.202 4.320
(8.975) (1.689)

Year 2002 -0.461 3.650
(8.849) (1.630)

Year 2003 -1.361 3.319
(8.865) (1.637)

Year 2004 4.678 2.277
(8.814) (1.612)

Year 2005 -0.836 -0.138
(8.797) (1.604)

Constant 95.280 474.263 70.443 506.119
(88.824) (34.857) (107.709) (31.280)

Observations 18 18 18 18
R2 0.141 0.948 0.202 0.978

Table 4 summarizes the OLS regression result for all four models in Eq 1 - 4. The result for the
pool regression model (Eq 1) shows that the coefficient of the speeding fine, β1, is positive. When
the country dummy variable is included (Eq 2), however, β1 changes signs. This confirms our visual
inspection of the pattern in Figure 2. In contrast, the model with the year dummy variable (Eq 3)
results in a positive β1 with a very similar magnitude of the coefficient in the pooled model Eq 1,
implying that the year-level heterogeneity does not affect the estimation of the impact of speeding
fine on car accidents. A similar result can be seen in the model with both year and country dummy
variables (Eq 4) where the estimated coefficient β1 is almost identical to that of the model with the
country dummy variable (Eq 2). This lack of the impact of the year-level variation can be seen in
Figure 3 where the relationship between car accidents and speeding fine is plotted conditional on
the year group. Unlike the country group conditioning, there is still a clear positive relationship
between the two variables.
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Figure 3: Car accident vs. speeding ticket, year-level

As this exercise suggests, the impact of adding group-level variables is not monolithic: it
can sometimes change the sign of the main coefficient but it also can have no impact. A good
understanding of the underlying data-generating process aided by a good theory can help
researchers to select potentially influential group-level variables in data. However, identifying
which group-level variable plays an important role is an empirical task in the end.

It is important to note that adding a group-level dummy variable allows the “intercept” to
vary by group. For example, the estimated coefficients for the country dummy variable (Eq 2) are
15.201 and 31.537 for Country B and Country C, respectively. This means that the intercepts of
the linear line for Country B and C move up by 15.201 and 31.537 from the baseline constant (the
intercept for Country A) of 474.263. For this reason, the least square regression with a dummy
variable can be understood as a type of varying intercept models, a general set of models where
intercepts are allowed to vary by predetermined groups. As we will see in the following section, the
dummy variable approach is a very special case of the varying intercept model where the variance
between groups is assumed to be infinite.

2 Varying coefficient model: concepts

2.1 Some notations

A standard notation for the OLS model with a dummy variable (Eq 1-4 becomes unwieldy when we
have multiple group variables to include because each observation of the variable is accompanied
by all group indicators in the data. From now, we will use separate group indicators and express
all variables at their individual observational level i.3 For a varying intercept model, we use the

3We can also drop i and treat each variable as a vector. This is what we have assumed throughout Topics 1-6.
However, we will keep i subscript in Topic 7 to give a more clear connection between the unit-level observation i and
the group-level observation, c, t.
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following notation:

yi = αt[i] + γc[i] + β1xi + εi for i = 1, . . . , 18, (9)

where subscript i represents the i-th observation/unit in the data, t[i] is the year group t containing
unit i, and c[i] is the year group c containing unit i. Same as before, αt and γc are the varying
intercept for the year group and the country group respectively.

2.2 Pooling, no-pooling, and partial pooling

So far, we have discussed two different approaches to group-level heterogeneity: a complete pooling
model and a no-pooling model. Complete pooling assumes that there is zero variance between the
subgroups and there is essentially no difference between them. Put it differently, the complete
pooling assumes that the observations in each group come from exactly the same data-generating
process. This assumption leads to a pooled regression in Eq 1 or Eq 5. In contrast, no pooling
assumes that each group is independent of one another (infinite variance between the individual
subgroups), and the observations in each group are a result of completely different data-
generating processes. This assumption leads to the dummy variable regression in Eqs 2-4 or Eqs 6-8.

The varying coefficient model that we introduce in this section is a compromise of these two
extremes and is often called the partial pooling model. In this model, the group-level variation
is accounted for, but not to the extent that each group is its own isolated unit whose generative
process has nothing in common with the other groups.

There are two key advantages of using partial pooling models. First, the similarity (or the
difference) of observations across different groups is directly estimated from the data without as-
suming it beforehand. This becomes important when the group-level variability is a centerpiece
of research designs. Second, the partial pooling effectively pools outlying estimates to the grand
mean coefficient. This desirable property helps to avoid overfitting and leads to a lower total mean
squared error compared to estimating each coefficient separately.

2.3 James-Stein estimator: baseball example

Then, why and how does the partial pooling minimize the mean squared error of estimation?
To see this point, let us go through a famous example by Efron & Morris (1977) where
authors discuss James’s paradox using a baseball example. Suppose we are interested in
a baseball player’s true batting ability using the data on the player’s observed average of
success, e.g. 7 hits in 20 official times. The true batting ability is then used to project
how well the player’s batting record will be in the future, e.g. in the next 100 times
at-bat. A common-sense approach to this seemingly simple problem is to use the observed
batting average 0.350 (7/20) and predict 35 hits in the next 100 times at bat(100 × 0.350).
However, this simple extrapolation from the observed average turns out to work rather poorly
when we have three or more baseball players. That is, when we want to predict future
batting average for each of the multiple players, simple extrapolation from the observed av-
erage of each player is less accurate than the alternative estimator, called the James-Stein estimator.

Efron & Morris (1977) dissect this paradox by examining the batting average of 18 major-league
players. The first 45 times at bat in the 1970 season are used to calculate the observed batting
average for each of the players, which we denote by y, a vector of 18 batting averages. A simple
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extrapolation for the future batting average for players is based on this vector y. In contrast, the
James-Stein estimator uses the grand average of the observed quantity, ȳ ≡ 1

n

∑n
i=1 yi. The key

mechanism is that when a player’s observed batting average is different from the grand average, it
is adjusted to some degree. For example, if a player’s batting average is greater than the overall
mean, it needs to be reduced. We will denote this adjusted batting ability by z, a vector of 18
adjusted batting averages, which can be found through the following equation:

zi = ȳ + c(yi − ȳ) (10)

In other words, the James-Stein estimator for the true batting ability, z, is calculated by adjusting
the difference between the observed average of each player y and the grand average ȳ by the
constant factor c, which is called a shrinking factor.4

In the authors’ calculation, the grand average ȳ and the shrinkage factor c are 0.265 and 0.212,
respectively. Therefore, if the player’s observed average is .400, the James-Stein estimator for this
player’s true batting ability is .265 + .212(.400 - .265) =.294, which is significantly smaller than
.400. The authors go on and show that the James-Stein estimator z is a better indicator of the
players’ true batting ability because it better predicts the future batting average for each of the
players. Denoting the future batting average by θ, the prediction error is calculated via a total
squared error (the quadratic loss function): (θ − y)2 and (θ − z)2, respectively. It turns out that
(θ− y)2 = 0.077 and (θ− z)2 = 0.022, meaning that the James-Stein estimator has almost 4 times
smaller prediction error.

This is not a fluke. James-Stein theorem proves that the estimator with the shrinkage factor,
z, always performs better than the simple average y when we have 3 or more separate groups in
the data. It has a remarkable implication for regression with multigroup data. The least-square
regression with dummy variable we discussed above is essentially the varying intercept model
where the intercept varies by the pre-determined group. The problem is that the intercept of
each group is estimated separately from one another with no shrinkage factor, which, via the
James-Stein theorem, leads to a higher total squared error than the estimator with a shrinkage
factor.

Note that the simple observed average y is an unbiased estimator for the future average θ,
while the estimator with a shrinkage factor, z, is a biased estimator by definition (See Topic
2). Here, we encounter another example of the bias-variance tradeoff where the simultaneous
reduction of bias (in-sample prediction error) and variance (the mean-squared error, or the
out-of-sample prediction error) is extremely difficult. However, if introducing a bit of bias can lead
to a significant gain in out-of-sample prediction, having a biased estimator cannot be a concern.
And, this is exactly what the James-Stein estimator does.

In the following section, we will discuss how we can rephrase the James-Stein estimator as a
hierarchical model within a Bayesian framework. By relying on a Bayesian approach, we will be
able to see a very clear interpretation of the shrinkage factor.

4Calculating the shrinking factor is important but requires a more detailed discussion. Since we will introduce
another approach to shrinking factor (Bayesian hyper prior) in the following section, we will skip the calculation of
James-Stein’s shrinking factor but focus more on the property of the estimator itself.
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3 Bayesian varying coefficient model

3.1 Varying intercept model

Model setup

This section discusses a particular specification of a varying intercept model as was introduced
in Eq 9. We will focus on high-level conceptual aspects of the model than on its implementation.5

In line with Eqs 1-4, we will compare four different models: a base model with no varying
component, and three different models with varying intercepts for a country group, for a year
group, and for both country and year groups. Using a normal error model (a normal likelihood), a
varying intercept model is described in the following equations:

yi ∼ Normal (µi, σ) (11)

µi = β0 + β1xi (12)

µi = β0 + γc[i] + β1xi (13)

µi = β0 + αt[i] + β1xi (14)

µi = β0 + γc[i] + αt[i] + β1xi (15)

The basic notation was discussed above in Eq 9. Two additional parameters are β0 and σ. β0
is the estimation of the overall intercept or the grand mean. It is a reference point for the
group-varying effects, γc[i] and αt[i], which indicate the deviation of a specific country- and
year-group intercept, respectively, from the overall intercept β0. σ is the scale parameter of the
normal distribution and can be interpreted as the overall residual of the model.

Note that there are two different types of parameters. One is the population-level parameter
such as β0 and β1. These parameters are defined at the population-level and therefore are fixed
across their own groups. The other set of parameters is the group-level parameter such as γc and
αt. These parameters are defined at the group-level and therefore are varying across their own
groups.

Now that we set up a basic varying intercept model, let us discuss how to incorporate the
“shrinkage factor” of the James-Stein estimator in our varying intercept model. Remember that
the James-Stein estimator pulls group-level observations to a grand mean whose degree of pulling
is determined by the shrinkage factor. In a Bayesian multilevel model, we achieve this by allowing
the group-level parameters (γc, αt) to be drawn from a common overall prior distribution that
is governed by hyperparameters. Since the group-level parameters are generated from an overall
distribution that is “one level higher”, this model is also called a hierarchical model. To see this
point more clearly, let us formulate a model where the group-level parameters are assumed to
come from the same normal distribution with unknown scale parameter. This scale parameter is a
hyperparameter that determines the degree of heterogeneity across groups and is equivalent to the
shrinkage factor in the James-Stein estimator. This way, all group-level parameters are from the

5A detailed discussion on prior specifications and estimation strategy is not covered in this section. Also, an
important discussion on the correlation between predictors and group-effects (Bafumi-Gelman estimator, Bafumi &
Gelman (2006)) is not discussed in this section. These topics will be discussed in a more advanced course.
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common generative process but their variation can also be accounted for. The following equations
show the prior distributions for γc and αt:

γc ∼ Normal(0, σγ) for c = A,B,C (16)

αt ∼ Normal(0, σα) for t = 2000, ..., 2005 (17)

Eq 16 shows that the country-level varying intercepts γc are drawn from a normal distribution
with unknown standard deviation6, σγ . The same goes for αt. As noted above, one of the key
advantages of using this type of varying coefficient model is that the variance of observations
across different groups, σγ and σα, is directly estimated from the data.

To be fully Bayesian, we need prior distributions on unknown parameters, σγ , σα (See Topic 3).
When priors are applied to hyperparameters, they are called hyperpriors. The choice of the func-
tional form of the priors requires more detailed discussions that are beyond the scope of this course.
Interested students can refer to Gelman et al. (2017) for an overview on Bayesian priors. As we
briefly discussed in Topic 3, many of the prior specifications are mostly motivated by computational
efficiency. Also, parameter values of the prior distributions are often chosen to make the prior only
weakly informative and thus make the estimation results less sensitive to prior specifications. For
our exercise, we will be using the following prior specifications:

β0 ∼ Student-t (0, 3, 10) (18)

β1 ∼ Normal(0, 10) (19)

σγ , σα, σ ∼ HalfCauchy (0, 1) (20)

The overall intercept (grand mean), α0 is given a weakly informative prior of the Student-t
distribution centered at 0, with 3 degrees of freedom, and 10 standard deviations. The hyperprior
on our hyperparameters σγ and σα are given a half-Cauchy prior centered at 0 with the scale
parameter 1. The model residual parameter σ has the same half-Cauchy prior.

Estimation results
The estimation results for varying intercept models are displayed in Table 5.7 The format of the
summary table follows Table 4 for easy comparison between a dummy variable approach (no
pooling) and a Bayesian varying coefficient model (partial pooling).

The results for varying intercept models have three main components. The first one is the
coefficients of the population-level predictors, β0 and β1. Both dummy variable model and
Bayesian varying intercepts model (in all four models) seem to have similar estimated mean values
for β0 and β1. Same as before, including the year-varying effect reverses the sign of β1.

The second component is the set of coefficients for country-varying intercepts shown in
Eq 13 and Eq 15. For example, γA in the model with the country-varying intercept Eq 13 is
estimated to be -15.11 with the standard deviation of 7.634. This means that the intercept of
Country A is 15.11 smaller than the overall intercept, which is estimated to be 482.24. The same
logic goes for γB and γC . σγ is the scale parameter of the prior on γc, reflecting the degree of

6When the variable is mean-centered, we can set the mean deviation from the grand to be zero.
7For the posterior simulation, we use the Bayesian programming language Stan that operationalizes the Hamil-

tonian Monte Carlo (HMC) algorithm to efficiently compute posterior distributions of specified parameters. (Stan
Development Team 2020)
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Table 5: Estimation results for the four models in Eqs 12 - 15. The estimates are the mean value of the
posterior distribution of each parameter. The standard deviation is in the parenthesis.

Outcome variable:

Car accidents

Eq 12 Eq 13 Eq 14 Eq 15

Population-Level
Predictors

Grand Intercept, β0 93.86 482.24 88.07 502.08
(94.065) (39.683) (96.336) (39.387)

Speeding fine, β1 1.42 -2.37 1.47 -2.56
(0.954) (0.378) (0.938) (0.375)

Country-Level
Predictors

Country A, γA -15.11 -16.02
(7.634) (7.406)

Country B, γB -0.2 -0.59
(7.578) (7.318)

Country C, γC 15.87 15.92
(7.608) (7.356)

Country SD, σγ 16.4 16.73
(7.32) (7.735)

Year-Level
Predictors

Year 2000, α2000 -0.01 -1.13
(2.813) (1.383)

Year 2001, α2001 -0.59 1.02
(2.881) (1.407)

Year 2002, α2002 0 0.73
(2.76) (1.305)

Year 2003, α2003 -0.24 0.59
(2.762) (1.288)

Year 2004, α2004 0.99 0.13
(2.981) (1.284)

Year 2005, α2005 -0.14 -1.23
(2.798) (1.419)

Year SD, σα 2.85 3.00
(2.489) ( 2.72)

Observations 18 18 18 18
Bayesian R2 0.16 0.93 0.2 0.95

(0.122) (0.019) (0.116) (0.019)

difference/similarity between country-varying intercepts. In the model with the country-varying
intercept, it is estimated to be 16.4, which is significantly higher than the one in the model with
the year-varying intercept.

The third component is the set of coefficients for year-varying intercepts shown in Eq 14 and
Eq 15. As noted above, σα is estimated to be very small, suggesting that there is not much
variation among year-varying intercepts.

The Bayesian version of R2 is presented for each of the models. Same as the dummy variable
model, it shows that including a country-varying intercept increases the model fit significantly.
The fit of each model can be visually checked in Figure 4 where predicted values of car accidents,
yrep from the model are compared to the actual observation, y. This type of exercise is commonly
known as the posterior predictive check. It is clear that predicted values in the model with the
varying country intercept more closely match the actual observations, confirming higher Bayesian
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R2 for these models.
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Figure 4: Predictive checking for model estimation of Eqs 12 - 15

There is one last important point we need to examine. We introduced the Bayesian
multilevel model in the context of the shrinkage factor in the James-Stein estimator and showed
that the shrinkage is achieved through partial pooling. Then, how can we examine to which
degree shrinkage took place in our estimation? The most intuitive way to check shrinkage
is to directly compare the varying coefficients from the no pooling (dummy variable model)
and partial pooling models (Bayesian multilevel model). Figure 5 shows the comparison of
estimated group-level intercepts for two models. The left-hand side compares the country level
intercept in Eq 1 and Eq 12 while the right-hand side compares the year level intercept in Eq 3
and Eq 14. Intercepts in no pooling and partial pooling models are in black and in red, respectively.

It is clear that the partial pooling models estimate the group-level intercepts closer to one
another, meaning that country- and year-varying intercepts are pulled toward the grand mean.
Note that when the estimates of the group-level coefficients are nosier, the degree of shrinkage is
higher so that they are pulled more strongly toward the grand mean. This can be seen in the year
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Figure 5: No pooling vs. partial pooling

varying intercept where the estimation error (or the standard deviation of the posterior distribution)
tends to be higher.

3.2 Varying slope model

In the linear regression setting, we can also allow the slope coefficients to vary by groups. To
showcase effectiveness of a varying slope model, we will use a different data set because the
car accident data does not have much variation in the group-level slope as shown in Figures 2.
The new (simulated) data is shown in Figure 6. The left-hand side plot shows a simple linear
relationship between x and y while the right-hand side plot shows the same relationship
conditional on three different groups. It is clear that each group has different slopes and intercepts.
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Figure 6: x vs. y, pooled & group-level

To understand this data, we will use a varying coefficient model where both intercepts and
slopes vary by group. The model can be written as follows:
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yi ∼ Normal (µi, σ) (21)

µi = α0 + αj[i] + (β1 + βj[i])xi (22)

where α0 and β1 are the population-level intercept and slope while αj and βj are the varying
intercept and slope for group j. As before, group-varying effects are estimated as the deviation
from the population effect.

The prior specification is the following:

α0 ∼ Normal(0, 10) (23)

β1 ∼ Normal(0, 5) (24)

σ ∼ HalfCauchy (0, 1) (25)

αj ∼ Normal(0, σα) (26)

βj ∼ Normal(0, σβ) (27)

σα, σβ ∼ HalfCauchy (0, 1) (28)

where Eq 26 and Eq 27 represent the shrinkage prior on the varying intercept and slope. Note
that a more sophisticated model can include a covariance structure between αj and βj since these
parameters move within the same group. Table 6 summarizes the estimation results. Since we are
not comparing different models as we did in Table 5, we provide more detailed information about
the posterior distribution of each parameter in the model, including the 2.5% and 97.5% of the
posterior distribution.

Table 6: Estimation result for the model in Eq.22

Parameter Mean SD 2.5% Q 97.5% Q

Population-Level
Predictors

α0 1.642 1.59 -2.019 4.787
β1 -0.698 6.19 -13.543 11.732

Varying
Intercept

αgroup1 -0.07 1.59 -3.404 3.57
αgroup2 0.604 1.679 -2.229 4.881
αgroup3 -0.282 1.598 -3.799 3.172

σα 1.908 2.363 0.047 8.508

Varying
Slope

βgroup1 -6.397 6.382 -19.795 6.36
βgroup2 0.155 6.239 -13.063 12.944
βgroup3 6.029 6.311 -6.562 19.476

σβ 9.204 5.362 3.106 22.311

Residual Error σ 8.701 0.365 8.012 9.442

As predicted from Figure 6, the group-level slope is estimated to significantly vary by each
group. For example, the slope of the linear relationship between x and y in Group 1 is -6.397
while that in Group 3 is 6.029.

Finally, let us discuss the effect of partial pooling in the model. As we discussed in Topic 5, the
varying slope can also be formulated by adding an interaction of the group level variable and the
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main predictor, which in essence adds dummy variables in the slope coefficient, (β1 + βj)x. This is
exactly the same expression as in Eq. 22 but without any common generative process of βj . That
is, linear regression with interactions (with the group-level factor) is the no-pooling counterpart
to our Bayesian partial-pooling model.8 Figure 7 shows a comparison of the group varying slopes
in no-pooling and partial pooling. As predicted, there is some degree of shrinkage in the partial
pooling model.

Group varying slope
−7 0 7

No pooling
Partial pooling

Figure 7: No pooling vs. partial pooling

8Equivalently, we can use a very wide distribution whose variance is extremely large and use this as a prior
distribution on the group-varying coefficients.
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